ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО АВТОНОМНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» В Г. ПЯТИГОРСКЕ ИНСТИТУТ СЕРВИСА, ТУРИЗМА И ДИЗАЙНА

На правах рукописи

КЛИМЕНКО ОЛЬГА ВЛАДИМИРОВНА

ИССЛЕДОВАНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ И СОВЕРШЕНСТВОВАНИЕ ОВОС ВОДОХОЗЯЙСТВЕННЫХ ОБЪЕКТОВ (НА ПРИМЕРЕ БАССЕЙНОВЫХ ГЕОСИСТЕМ СТАВРОПОЛЬСКОГО КРАЯ)

05.23.19 - Экологическая безопасность строительства и городского хозяйства

Диссертация на соискание учёной степени кандидата технических наук

Научный руководитель: кандидат технических наук, доцент Семенова Елена Анатольевна

СОДЕРЖАНИЕ

ВВЕЛЕН	ИЕ
	АНАЛИЗ ПРИРОДНЫХ И ВОДОХОЗЯЙСТВЕННЫХ ХАРАКТЕРИСТИК
	НОВЫХ ГЕОСИСТЕМ СТАВРОПОЛЬСКОГО КРАЯ
1.1	Основы обеспечения экологической безопасности водохозяйственных
1.1	объектов
1.2	ОВОС водохозяйственных объектов и ее роль в обеспечении экологической
	безопасности
1.3	Системный подход при исследовании экологической безопасности
1.4	Анализ природных и водохозяйственных характеристик бассейновых
	геосистем Ставропольского края как основы для исследования
	экологической безопасности
	1.4.1 Оценка физико-географических и климатических характеристик
	бассейновых геосистем
	1.4.2 Анализ водохозяйственного комплекса в пространственных пределах
	бассейновых геосистем Ставропольского края
	1.4.2 Инженерно-геологические условия и экзогенные геологические
	процессы
1.5	Выводы по первой главе
ГЛАВА	2 РАЗРАБОТКА ЭЛЕМЕНТОВ МЕТОДОЛОГИИ ПО
COBEPII	ІЕНСТВОВАНИЮ ОВОС ВОДОХОЗЯЙСТВЕННЫХ ОБЪЕКТОВ, КАК
	РА ОБЕСПЕЧЕНИЯ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ
2.1	Основы методологии оценки воздействия на природные среды
	водохозяйственных объектов оросительных систем
2.2	Основы процессов взаимодействия компонентов живой и неживой природы
2.2	в пределах локальных бассейновых геосистем
2.2	
2.3	Оценка видов воздействия на природные среды в зонах влияния
	водохозяйственных объектов
	2.3.1 Обоснование зон влияния комплекса гидротехнических сооружений
	МГЭС на участках бассейновых геосистем
	2.3.2 Виды воздействия на окружающую среду в период строительства ГЭС

2	2.4	Методологические основы обеспечения экологической безопасности водохозяйственных объектов в составе ПТС «П.СВ.ОН»					
2	2.5	Выводы по второй главе					
ГЛАВА	A	3 ОЦЕНКА ЭКОЛОГИЧЕСКОЙ СИТУАЦИИ НА УЧАСТКАХ					
		РУЕМЫХ РАБОТ СТРОИТЕЛЬСТВА ВОДОХОЗЯЙСТВЕННЫХ					
ОБЪЕК	(TO	B					
3	3.1	Методика проведения полевых, камеральных и лабораторных исследований					
3	3.2	Маршрутные исследования					
3	3.3	Оценка уровня загрязнения атмосферы					
		3.3.1 Источники загрязнения атмосферы					
		3.3.2 Показатели загрязнения атмосферы.					
3	3.4	Гидрохимическая оценка состояния поверхностных вод					
		3.4.1 Источники загрязнения поверхностных вод					
		3.4.2 Показатели качества вод в зоне предполагаемых ГЭС					
3	3.5	Оценка состояния подземных вод в верхних слоях атмосферы					
3	3.6	Оценка состояния почвенного покрова на участках проектируемых					
		«B.O.»					
3	3.7	Бытовые и промышленные отходы.					
3	3.8	Рекомендации к программе экологического мониторинга на участках					
		строительства МГЭС					
3	3.9	Выводы по третьей главе					
ГЛАВА	4 4	прогноз изменения экологического состояния в зонах					
ВЛИЯ	НИЯ	І ВОДОХОЗЯЙСТВЕННЫХ ОБЪЕКТОВ, КАК ФАКТОРА ОБЕСПЕЧЕНИЯ					
ЭКОЛО	ОГИ	ЧЕСКОЙ БЕЗОПАСНОСТИ9					
۷	4.1	Теоретические основы оценки взаимодействия водохозяйственного объекта					
		в составе ПТС «П.С. – В.О. – Н».					
۷	4.2	Системный мониторинг экологической безопасности в зонах влияния					
		водохозяйственных объектов					
۷	4.3	Прогноз изменений экологического состояния в зонах влияния КГТС					
		MΓЭC					
۷	1.4	Выводы по четвертой главе					

ГЛАВА	5 СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ И ЭКОЛОГИЧЕСКОЕ						
ОБОСНО	ВАНИЕ СТРОИТЕЛЬСТВА КГТС МГЭС НА ОРОСИТЕЛЬНЫХ						
СИСТЕМ	ІАХ СТАВРОПОЛЬСКОГО КРАЯ						
5.1	Социально-экономические условия в зонах влияния КГТС						
	МГЭС						
-	5.1.1 Изобиленский муниципальный район						
	5.1.2 Буденовский муниципальный район						
	5.1.3 Нефтекумский муниципальный район						
5.2	Эколого-экономическая эффективность планируемых к строительству						
	МГЭС						
	5.2.1 Коммерческая эффективность строительства МГЭС						
	5.2.2 Бюджетная эффективность строительства МГЭС						
	5.2.3 Социально-экономическая и экологическая эффективность						
	строительства МГЭС						
5.3	Выводы по пятой главе						
	ЗАКЛЮЧЕНИЕ						
	СПИСОК ЛИТЕРАТУРЫ.						
	ПРИЛОЖЕНИЕ А						
	ПРИЛОЖЕНИЕ Б						
	ПРИЛОЖЕНИЕ В.						
	ПРИЛОЖЕНИЕ Г						
	ПРИЛОЖЕНИЕ Д						
	ПРИЛОЖЕНИЕ Е						

ВВЕДЕНИЕ

Актуальность темы исследования. Системное исследование экологической безопасности в зонах влияния водохозяйственных объектов вызвало необходимость в совершенствовании методологии оценки воздействия на окружающую среду (ОВОС) действующих и строящихся объектов по использованию водных ресурсов зоны влияния, которых охватывают обширные пространственные пределы, где расположены городские и сельские урбанизированные территории.

Совершенствованию методологии ОВОС на действующих и строящихся оросительных системах определила необходимость изучения процессов по формированию системной упорядоченности между «Природными средами», «Водохозяйственными объектами» и «Населением» в составе ПТС «П.С.-В.О-Н. и целостности, как механизма управления по обеспечению сохранения развития, а через развитие обеспечение сохранения ведущей роли целого над частями рассматриваемых систем, которая становится достижимой при более совершенной методологии ОВОС «Водохозяйственных объектов» с использованием внутрисистемную их энергоэффективность, как экологических факторов экологической безопасности.

Тема диссертации соответствует паспорту специальности 05.23.19 «Экологическая безопасность строительства и городского хозяйства», пункт 1, 2, 10.

Степень разработанности темы диссертационного исследования.

Проблема обеспечения экологической безопасности в строительстве исследуется не одно десятилетие, которой посвящены работы известных Российских ученых: Денисова В. В., Теличенко В. И., Румянцева И. С., Динилова-Даниляна В. В., Гутенева В. В., Приваленко В. В., Черняева А. М., Азарова В. Н., Волосухина В. А., Израэля Ю. А. и др. Работы по данным вопросам имеют достаточную научную новизну, однако можно отметить, что в исследовании экологической безопасности по совершенствованию ОВОС «Водохозяйственных объектов» при использовании водных ресурсов имеют начальный этап, требующий дальнейших исследований.

Цель диссертационной работы – совершенствование методологии OBOC в зонах воздействия и функционирования водохозяйственных объектов как фактора по обеспечению экологической безопасности на основе системного подхода.

Для решения поставленной цели в работе решались следующие задачи:

1. Анализ природных и водохозяйственных характеристик бассейновых геосистем Ставропольского края в части изученности процессов взаимосвязи, взаимодействия и взаимоотношения природных и техногенных компонентов в составе ПТС «П.С.-В.О.- Н.».

- 2. Разработка элементов методологии по совершенствованию ОВОС водохозяйственных объектов, как фактора по обеспечению экологической безопасности.
- 3. Геохимические исследования экологической безопасности в зонах влияния водохозяйственных объектов в пространственных пределах локальных бассейновых геосистем.
- 4. Прогноз изменения экологического состояния в зонах влияния водохозяйственных объектов, как фактора формирования экологической безопасности.

Разработка научных основ оценки экологической безопасности и устойчивого развития хозяйственной деятельности по использованию водных ресурсов в орошаемом земледелии.

Научная новизна работы:

- разработаны элементы методики инженерно-экологических изысканий по оценке экологической безопасности на функционирующих и строящихся водохозяйственных объектах в составе оросительных систем;
- разработаны элементы методики оценки экологической безопасности по совершенствованию методологии ОВОС водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н» оросительных систем.
- разработаны природные мероприятия и прогноза изменения экологического состояния в зонах влияния водохозяйственных объектов, как управляющего фактора по формированию экологической безопасности;
- сформулированы методологические основы экологически устойчивого функционирования водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н» оросительных систем.

Теоретическая и практическая значимость работы:

- результаты анализа водохозяйственных характеристик локальных бассейновых геосистем Ставропольского края определили возможность обосновать структурную модель класса ПТС «П.С.-В.О.-Н.» применительно для 9 функционирующих и 1 строящейся оросительных систем на площади 306 тыс. га (Приложение А);
- разработаны элементы методики проведения инженерно-экологических изыскания применительно для функционирующих и строящихся водохозяйственных объектов оросительных систем;
- разработаны элементы методики оценки экологической безопасности
 функционирующих и строящихся водохозяйственных объектах оросительных систем;
- применительно для оросительных систем разработаны элементы прогноза изменения экологического состояния в зонах влияния водохозяйственных объектов, как управляющего фактора по формированию экологической безопасности;

– исходя из принципа единства действий природы и проводимой хозяйственной деятельности по использованию водных ресурсов на оросительных системах сформулированы концептуальные основы устойчивого функционирования водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н» оросительных систем.

Результаты диссертационной работы внедрены в деятельность ООО «ЭнергоМИН» и СПК «Архангельский» (Приложение А).

Методология и методы исследования базируется на фундаментальных законах природы, обобщении современных знания в области обеспечения экологической безопасности, системного анализа природных и природно-технических систем, методики ОВОС водохозяйственных объектов, методик проведения инженерно-экологических изысканий, синтезы результатов исследований экологической безопасности в зонах влияния водохозяйственных объектов оросительных систем

Положения, выносимые на защиту:

- элементы методики инженерно-экологических изысканий по оценке экологической безопасности водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н» оросительных систем;
- элементы методики оценки экологической безопасности по совершенствованию методологии ОВОС водохозяйственных объектов оросительных систем;
- элементы прогноза изменения экологического состояния в зонах влияния водохозяйственных объектов, как управляющего фактора в процессах формирования экологической безопасности.

Степень достоверности достоверность полученных результатов исследований подтверждается: применением современных методов проведения экологических исследований, представительностью и надежностью результатов полевых, маршрутных, и лабораторных исследований, использованием стандартных методик, современных сертифицированных приборов и оборудования, положительными результатами апробации методологии ОВОС водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н.» оросительных систем.

Апробация результатов исследования. Основные положения и результаты работы докладывались и получили одобрение на: конференции молодых инженеров-экологов «Проблемы охраны производственной и окружающей среды» (г. Волгоград, 2014 г.); ежегодных научно-технических конференциях ФГБОУ ВПО Волгоградского государственного архитектурно-строительного университета, (г. Волгоград, 2010 – 2017 г.).

Публикации. Основные результаты исследований по теме диссертации изложены в 6 работах (вклад соискателя – 26,34 печатных листа), в том числе: 1 статья в изданиях, индексируемых в базе «Scopus», 1 статья, опубликованы в изданиях, рекомендуемых ВАК России.

Объём и структура работы. Диссертация состоит из введения, пяти глав, заключения, списка использованной литературы и приложений. Общий объем работы составляет 171 страницы, в том числе: 112 страниц — основной текст, содержащий 39 таблиц на 17 страницах, 34 рисунков на 27 страницах; список литературы из 148 наименований на 12 страницах; 6 приложений на 42 страницах.

ГЛАВА 1 АНАЛИЗ ПРИРОДНЫХ И ВОДОХОЗЯЙСТВЕННЫХ ХАРАКТЕРИСТИК БАССЕЙНОВЫХ ГЕОСИСТЕМ СТАВРОПОЛЬСКОГО КРАЯ

1.1 Основы обеспечения экологической безопасности водохозяйственных объектов

В XX и в начале XXI века возникла проблема безопасности в условиях современного природопользования, обусловливаемого хозяйственной деятельностью в различных отраслях, в том числе и в использовании водных ресурсов бассейновых геосистем.

Хозяйственная деятельность, связанная с проведением работ по мелиоративному обустройству территорий в пространственных пределах бассейновой геосистемы должна обеспечивать «ЭБ» для населения, проживающего в зонах влияния «ВО» оросительных систем.

Научное направление ЭБ начало свое развитие со второй половины 20-го столетия и планомерно продолжает свое развитие по настоящее время. Сформированность данного научного направления обусловливается обязательной необходимостью в устойчивом эволюционном развитии общества.

С двадцатых годов была утверждена новая специальность 05.23.19 — Экологическая безопасность строительства и городского хозяйства. В формирование этого научного направления определенный вклад внесли и вносят как отечественные ученые (Темченко В. И., Графкина М. В., Слесарев М. И., Азаров В. Н., Сидоренко В. Ф., Колчунов В. И., Беспалов В. И., Мензелинцева Н. В., Козин В. В., Петровский В. А. (2005), Мазур И. И. (1999), Румянцева Е. Е. (2005), Хоружая Т. А. (2002), Шмаль А. Г. (2000) и др.), так зарубежные ученые. ЭБ является одной из составляющих национальной безопасности, обусловливающей сочетание природных, социальных условий, видов хозяйственной и иной деятельности, обеспечивающих безопасную жизнедеятельность населения, проживающего в зонах влияния объектов природообустройства, водопользования и др. [16, 36, 39].

Если рассматривать развитие экологического направления, связанного с обеспечением экологической безопасности в техносферной среде антропогенной деятельности в условиях экологически устойчивого социально-экономического развития, то это требует нетривиальных методологических подходов и моделей в изучении природных и ПТС «П.С.—О.Д.—Н». В соответствии с отмеченным, автор [7] считает возможным дополнить определение бассейновой геосистемы, которое более максимально будет учитывать важнейшие понятия с внедрением пространственного фактора, описывающего действительную реальность.

Бассейновая геосистема в пределах ландшафтно-геологического пространства в виде образного цилиндра, расположенного вертикально, образующая которого проходит по

водораздельной линии водосборной территории водного объекта, верхняя кромка (крышка) которого располагается на высоте границы приземных слоев (до 10 км) атмосферы, а нижняя кромка (дно) расположена на глубине верхних слоев литосферы, где активно формируются подземные природные воды (до 300 м). Схема бассейновой геосистемы представлена на рисунке 1.1.

По иерархическому уровенному показателю целесообразно классифицировать нижеприведенным образом бассейновые геосистемы:

- океанов и морей (самый высокий уровень);
- главных рек (Волга, Дон, Кубань и др.), впадающие в океаны и моря;
- рек-притоков первого порядка, впадающие в главные реки;
- рек-притоков второго порядка, которые впадают в реки-притоки первого порядка;
- малой реки или водотока, которая не имеет притоков и является бассейновой геосистемой первого класса, а выше бассейновые геосистемы второго, третьего и т.д. классов.

Следовательно, к самому высшему классу бассейновых геосистем можно отнести системы океанов и морей.

Наиболее стабильными по своим граничным условиям являются суши материков в границах биосферы Земли бассейновые геосистемы, так как сообщение водных масс в приземных слоях атмосферы, поверхностный и подземный стоки формируются в пределах водосборных территорий речных систем, относящихся к постоянным в историческом разделе времени.

К бассейновым геосистемам наиболее низкого класса можно отнести геологические биологические системы со второго по четвертый и т.д. классы. Наиболее значимыми по водосборной территории являются бассейновые геосистемы рек Енисей (2580 тыс. км²), Лена (2490 тыс. км²), Обь (2990 тыс. км²), Амур (1855 тыс. км²), Волга (1360 тыс. км²), Колыма (647 тыс. км²), Дон (422 тыс. км²), Индигирка (360 тыс. км²), Селенга (447 тыс. км²), Печора (322 тыс. км²) и др. из шестнадцати бассейновых геосистем высшего класса океанов и морей на территории России, включающих в себя более 2,5 млн. бассейновых геосистем более низкого класса [44, 45].

Процессы хозяйственной деятельности, которые обусловливают создание и функционирование множества объектов деятельности различных по функциональной принадлежности и характеру воздействия на окружающую природную среду, протекают в пространственных пределах бассейновых геосистем.

Переходу (превращению) локальной природной среды (биосферы) в техносферу, где главенствующую роль в системе «П.С.–В.О.–Н» выполняют «В.О.», способствует множественность объектов деятельности в пределах бассейновой геосистемы.

Платформой научного направления «Экологическая безопасность» считается природная среда и защита человека от отрицательных воздействий антропогенного, техногенного, природного или естественного происхождения, при которых возможны изменения состояния окружающей природной среды, негативно влияющие на процессы жизнедеятельности живой материи – человека, биоты [49].

В научном направлении предметом исследования ЭБ являются экологические опасности и их сочетания, действующие в системах «объект защиты – источник опасности – меры защита от опасности».

Материальный мир, все человечество, а также окружающая среда являются объектами защиты от экологической опасности.

Техногенные объекты в виде урбанизированной, мелиорируемой и рекреационной территории, строительного и водохозяйственного комплекса, здания и сооружения, транспортной магистрали и т. п. могут выступать в качестве источников экологической опасности. Так же к источникам экологической опасности можно отнести изменения в окружающей природной среде, происходящие в результате воздействия поражающих факторов техногенных аварий и катастроф.

Одними из главных источников экологической опасности могут также являться стихийные явления и катастрофы природного происхождения (катастрофические наводнения, масштабные землетрясения, оползневые процессы и другие негативные явления). Изучение, анализ и понимание природы возникновения экологической опасности, а также характера и причин их воздействия на человека и природную среду, являющихся объектами защиты, лежит в основе системного подхода к оценке этих опасностей и обеспечения безопасности окружающей среды и жизнедеятельности человека.

В реальных условиях наличие системы «Объект защиты – Источник экологической опасности – Защитные мероприятия» («О.З.–И.Э.О.–З.М.») приводит к возникновению и реализации экологической опасности должны. В свою очередь наличие источника или источников экологической опасности, способны создавать потоки вещества, энергии и информации.

В соответствии с законом сохранения жизни Ю.Н. Куржаковского, в непрерывном обмене потоками вещества, энергии и информации принимает участие весь материальный мир, который и является источником воздействия на все материальное и, соответственно, на человека и окружающую природную среду. В реальном мире непрерывно действуют потоки вещества, энергии и информации. Если эти потоки превышают значения ПДК, ПДУ, ПДВ, ПДС, ПДО в зоне действия источника экологической опасности, то объект защиты при воздействии этих потоков испытывает ущерб. Объект защиты находится в нормальных

(нормативных) условиях жизнедеятельности, если потоки вещества, энергии и информации не превышают значений ПДК, ПДУ, ПДВ, ПДС, ПДО.

В соответствии с вышеизложенным, обобщенное понятие «Экологическая опасность» в системном понимании можно сформулировать в следующем виде:

Экологическая опасность – это отрицательное свойство факторов воздействия живой и неживой материи, способное наносить ущерб материи: обществу, человеку, природной среде.

Только при взаимодействии источника опасности с защищаемым объектом – человеком, обществом, природной средой, может реализоваться экологическая опасность.

Таким образом, зная определение понятия экологической опасности, можно проводить идентификацию этой опасности в окружающем пространстве, а также выполнять исследования по изучению причин возникновения и разработке необходимых мероприятий по обеспечению безопасных условий для жизнедеятельности человека и окружающей природной среды.

1.2 OBOC водохозяйственных объектов и ее роль в обеспечении экологической безопасности

Использование водных ресурсов, обеспечивается путем строительства различных типов водохозяйственных объектов (водохранилищные и водозаборные гидроузлы, орошаемые участки, системы водоснабжения и т. п.), которые размещаются в пространственных границах бассейновых геосистем, где формируются количественные и качественные показатели природных вод.

Пространственные пределы, где берут начало водообразующие ресурсы, включают в себя приземные слои воздушной среды (высотой до 10 км), земную поверхность водосборной территории с формировавшейся гидрографической речной сетью, и верхние слои литосферы (глубиной до 300 м) в пределах которой формируется подземный сток. Объемные границы этих пространственных пределов, в предлагаемой модели, определяются цилиндром, образующая которого, происходит по водораздельной линии водосборной территории, верхняя кромка (крыша) расположена на высоте 10 км, а нижняя кромка (основание) на глубине от дневной поверхности до 300 м. Пространственные пределы такого виртуального цилиндра в дальнейшем рассматриваются как модель бассейновой геосистемы, схема которой приведена на рисунке 1.1 [45, 46].

Формирование и использование водных ресурсов происходит в пространственных пределах бассейновых геосистем, которые имеют различные объемные размеры. Расчетные

размеры бассейновой геосистемы определяются в зависимости от целей по использованию водных ресурсов, конструктивных параметров и характером размещения водохозяйственных объектов на гидрографической сети бассейновой геосистемы. Поэтому авторами рекомендуется применять иерархическую структуру бассейновых геосистем с формировавшимися в них гидрографическими сетями водотоков (больших, средних, малых рек и ручьев) [10].

Таким образом, в зависимости от конструктивных параметров рассматриваемых водохозяйственных объектов на действующей искусственной гидрографической сети в пределах бассейновых геосистем при оценке воздействия водохозяйственных объектов на окружающую среду, с методологической точки зрения, исходят из обоснованных гидрологических расчетных створов на строительство малых ГЭС.

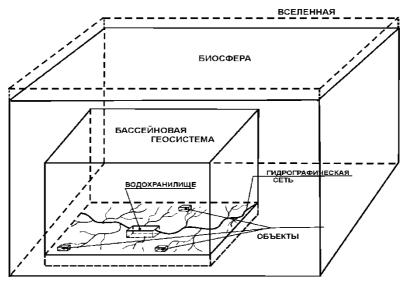


Рисунок 1.1 – Модель бассейновой геосистемы

Анализируя опыт использования водных ресурсов в гидроэнергетике, водоснабжении, в орошаемом земледелии и др. можно сделать вывод, что чем массштабнее экологические последствия от того или иного водохозяйственного объекта, тем раньше их следует обнаруживать и предотвращать. Уровень развития хозяйственной деятельности по использованию водных ресурсов на современном этапе нуждается не только в применении более эффективных способах ликвидации негативных последствий, но, в большей мере, в более совершенной методологии оценки воздействия на окружающую среду (ОВОС) [3].

При целенаправленном строительстве водохозяйственных объектов в пределах бассейновой геосистемы, учитывая современные нормативно-правовые требования по охране (защите) окружающей среды, необходимо обеспечить экологическую безопасность в зоне влияния водохозяйственного объекта, при этом сохранить благоприятную окружающую среду, биологическое разнообразие и имеющиеся природные ресурсы для нынешнего и будущих

поколений. Обеспечение экологической безопасности достигается применением необходимых экологически приемлемых субъективных решений, связанных с данным видом хозяйственной деятельности. Необходимое обоснование экологически приемлемые решения могут получить лишь в такой системе, где возможно взаимодействие водохозяйственных объектов с окружающей природной средой, при этом учитываются жизненно важные интересы населения, проживающего в зоне влияния объектов на окружающую среду. Поэтому, в методологическом плане, когда необходимо принять экологически приемлемое решение по строительству водохозяйственных объектов, используют системный подход. Системный подход прослеживается на стадии проектирования, строительства и эксплуатации данных объектов. Следовательно, одним из основных и самых важных механизмов в принятии экологически приемлемых решений является оценка воздействия на окружающую среду (ОВОС).

Под оценкой воздействия на окружающую среду (OBOC) можно понимать деятельность, которая направлена на идентификацию характера и степени потенциального воздействия намечаемой деятельности на окружающую среду, прогнозируемых экологических и связанных с ними социально-экономических последствий в процессе и после реализации такого проекта и определение мер по обеспечению обоснованного применения природных ресурсов и охрану окружающей среды от вредных воздействий в соответствии с требованиями действующего экологического законодательства.

Закон об охране окружающей среды (ст. 32) устанавливает общие требования об оценке воздействия на окружающую среду. Детальное регулирование проведения ОВОС осуществляется Положением об оценке воздействия намечаемой хозяйственной и иной деятельности на окружающую среду в Российской Федерации, утвержденным приказом Госкомэкологии России от 16 мая 2000 г.

Начиная с первой стадии планирования намечаемой экологически значимой деятельности заказчиком проводится оценка воздействия на окружающую среду. Заказчиком может выступать и индивидуальный предприниматель, и юридическое лицо. ОВОС позволяет обязать заказчика планируемой деятельности обеспечить выполнение требований экологического законодательства на стадии подготовки проекта.

Процедура ОВОС, в механизме экологического права, выполняет функции, связанные с обнаружением потенциального экологического вреда запланированной хозяйственной и иной деятельности, а также обязывает к разработке мер по его предупреждению. Если рассматривать в сравнении, то государственная экологическая экспертиза является правовым средством обеспечения учета и выполнения экологических требований на стадии принятия хозяйственного, управленческого и иного решения, а ОВОС – правовым средством обеспечения учета и выполнения этих требований на стадии подготовки соответствующего хозяйственного

решения.

Таким образом, введение OBOC в правовой природоохранный механизм в качестве элемента в последовательной системе других правовых превентивных мер позволяет не допустить появление хозяйственных и иных объектов или осуществления хозяйственной деятельности с нарушением требований законодательства об охране природы и использовании природных ресурсов.

1.3 Системный подход при исследовании экологической безопасности

Система — это множество взаимосвязанных элементов, образующих определенную целостность, единство. Состав, структуру и свойства системы изучают посредством системного анализа, являющегося основой системного подхода. Системный подход — направление в методологии познания объектов как систем.

Системный анализ включает следующие основные этапы:

- обозначение проблемы,
- постановка задачи и ограничение ее сложности,
- установление последовательности целей и задач,
- обозначение путей решения задачи,
- моделирование,
- анализ возможных стратегий,
- внедрение результатов.

Однако, указанный перечень необходимо применять только как основу, поскольку системный анализ представляет собой скорее способ мышления, нежели руководство к действию. При решении к конкретных задач, некоторые этапы исключаются или меняется порядок их выполнения.

Системный анализ — это не определенный математический метод, и даже группа математических методов. Это широкая стратегия научного поиска, которая, конечно, использует математический аппарат и математические концепции, но в рамках систематизированного научного подхода к решению сложных проблем. Под системным анализом понимается упорядоченная и логическая организация данных и информации в виде моделей. Модели — это как формальные описания основных элементов естественнонаучной проблемы в физических или математических терминах. Системный подход к решению и экологических проблем включает следующие этапы:

- обозначение различных возможных вариантов решения;
- понимание последствий использования каждого из возможных вариантов решения;
- применение объективных критериев, указывающих, является ли одно решение более предпочтительным, чем другие.

Однако, применяемые способы выбора решений не являются единственно возможными.

Следовательно, можно выделить следующие положения, которые необходимо учитывать при проведении системного анализа:

- процесс принятия решения выполняется так, чтобы используемые способы выбора решения можно было оценить, улучшить или заменить;
 - критерии оценки решения должны быть четко сформулированы;
- усилия, направленные на выявление связей между причинами и следствием, должны быть оправданы лучшим пониманием проблемы.

1.4 Анализ природных и водохозйственных характеристик бассейновых геосистем Ставропольского края как основы для исследования экологической безопасности

1.4.1 Оценка физико-географических и климатических характеристик бассейновых геосистем

Пространственные пределы Ставропольского края включают в себя части бассейновых геосистем рек Кубани, Терека, Западного и Восточного Маныча, Кумы и Междуречье Кумы-Малка и в количественном выражении составляют: территория водосборной площади 66,2 тыс. km^2 ; объем приземных слоев атмосферы 662 тыс. km^3 ; объем верхних слоев литосферы в пределах которых формируются поземные воды выходящие в естественную гидрографическую сеть 19,86 тыс. km^3 ; суммарный объем пространственных пределов $W_{c.k.} = 681,86$ тыс. km^3 . На территории Ставропольского края изначально формируются бассейновые геосистемы рек Егорлык и Калаус. Части бассейновых геосистем рек Кубань, Терек, Кума и Малка начальное формирование которых происходит на сопредельных субъектах Федерации соответственно — КЧР, Северная Осетия — Аланья и Кабардино-Балкарская Республика. Естественная гидрографическая сеть территории Ставропольского края относится к бассейновым геосистемам малых рек Кубани, Западного и Восточного Маныча, Терека, Кумы и Кума-Малкинского междуречья, соответственно бассейновым геосистемам Азовского и Каспийского морей

(рисунок 1.2, Приложение Γ).

По объему использования водных ресурсов, которые формируются в пространственных пределах бассейновых геосистем Кубани, Терека, Кумы, Западного и Восточного Маныча и междуречье Кумы-Малки [16, 17], доминирующее положение занимает бассейновая геосистема Верхней Кубани (52,5 % отбираемых расходов), далее бассейновая геосистема Терека (29,7 % отбираемых расходов), затем бассейновой геосистемы Кумы (17,2 % отбираемых расходов) и 0,6 % приходится на междуречье Кумы-Малки.

Основные параметры климата, как важные факторы в формировании экологического состояния, рассматриваемых бассейновых геосистем определяются температурой воздуха, относительной влажностью воздуха и скоростью движения воздушных масс. Именно температурой воздуха определяется степень континентальности климата, степень его комфортности, условия теплообеспеченности растительного и животного миров [10].

Средняя годовая температура пространственных пределов рассматриваемых бассейновых геосистем составляет примерно 10,5 °C. Наиболее высокие значения средней годовой температуры отмечаются на крайнем северо-западе и крайнем юго-востоке края: 11,2 °C в Новоалександровске и Изобильном и 11,3 °C в Рощино. В северо-восточной половине территории края обычно средние годовые температуры около 11 °C, в юго-западной зоне на высоте около 1000 м над уровнем моря и имеющем климатические характеристики, иногда заметно отличающиеся от климатических характеристик всех остальных метеостанций края, средняя годовая температура равна 8,5 °C (рисунок 1.3, Приложение Г).

Второй важной характеристикой климата является относительная влажность воздуха. Данная климатическая характеристика пространственных пределов рассматриваемых бассейновых геосистем территории имеет большое значение для отраслей хозяйственной деятельности края и в первую очередь — для сельскохозяйственного производства, здравоохранения и соответственно экологического состояния.

На рисунке 1.4 (Приложение Г) приведены данные о средней месячной и годовой относительной влажности воздуха. Из таблицы видно, что относительная влажность воздуха имеет ярко выраженный ход, который, однако, существенным образом зависит от высоты местности и местных орографических условий, а также характера подстилающей поверхности и окружающей среды.

Важным климатообразующим фактором и формировании поверхностного и подземного стока для рассматриваемых бассейновых геосистем Ставропольского края являются осадки [33]. Для Ставропольского края, являющегося одним из зерно-производящих регионов России, вопрос режима осадков имеет исключительно большое значение, поскольку на Ставрополье именно осадки являются лимитирующим фактором для развития сельскохозяйственного

производства.

На рисунке 1.5 (Приложение Г) представлены средние месячные и годовые суммы осадков, а также средние суммы осадков теплого и холодного периодов года. Из приведенных данных следует, что среднее годовое количество осадков варьирует на территории края от 370 мм в Арзгире до 640 мм в Кисловодске. Анализ показывает, что фактические годовые суммы осадков за отдельные годы весьма значительно отличаются от средних многолетних значений, так называемой нормы. Так, в Арзгире в 1975 году выпало за год всего лишь 50 % от нормы (185,5 мм), а в 1992 году — 160 % (594 мм). В Дивном, средняя многолетняя годовая сумма осадков составляет 447,9 мм, в 1962 г. выпало всего лишь 62 % нормы (277,1 мм), а в 1987 г. — 142 % (636,2 мм). Подобные отклонения отмечаются в крае повсеместно, при этом большой размах значений величины отмечается в засушливой части края.

В таблице 1.1 приведены средние даты образования и разрушения устойчивого покрова снега, а также средняя продолжительность периода с устойчивым снежным покровом.

Таблица 1.1 – Средние даты образования и схода снежного покрова на территории Ставропольского края

Станция	Дата образования	Дата разрушения	Средняя продолжительность периода, дней
Александровское	25 декабря	5 марта	66
Арзгир	2 января	25 февраля	54
Благодарный	18 декабря	26 февраля	70
Буденновск	27 декабря	19 февраля	54
Георгиевск	16 декабря	27 февраля	73
Дивное	22 декабря	27 февраля	67
Зеленокумск	25 декабря	22 февраля	59
Изобильный	23 декабря	17 февраля	56
Кисловодск	26 декабря	18 февраля	54
Красногвардейское	22 декабря	20 февраля	60
Минеральные Воды	12 декабря	23 февраля	73
Невинномысск	16 декабря	26 февраля	72
Новоалександровск	18 декабря	27 февраля	71
Рощино	23 декабря	19 февраля	58
Светлоград	26 декабря	19 февраля	55
Ставрополь	14 декабря	3 марта	79

Анализ распределения годовых сумм осадков на территории Ставропольского края свидетельствует, что самыми засушливыми на территории края являются крайние восточные районы: Арзгирский, Нефтекумский и восточная часть Курского района, где за год выпадает 300-370 мм осадков. В центральных районах края за год выпадает 450-550 мм осадков, в западных и юго-западных районах — 550-600 мм, в предгорных районах и на крайнем северозападе — более 600 мм. На общем сложном фоне распределения годовых сумм осадков четко

прослеживается одна закономерность: увеличение годовых сумм осадков на территории края с востока на запад, осложненное влиянием рельефа.

Анализ значений гидротермического коэффициента формировавшегося В % Ставропольского пространственных пределах края показывает, что около рассматриваемых пространственных пределов Ставропольского края могут охарактеризоваться как засушливые, 24 % пространственных пределов относятся к зоне неустойчивого увлажнения и 10 % этих пространственных пределов могут относится к зоне достаточного увлажнения.

1.4.2 Анализ водохозяйственного комплекса в пространственных пределах бассейновых геосистем Ставропольского края

Естественная гидрографическая сеть включает в себя сеть водотоков, малых и средних рек, озера и взаимосвязанные с ними подземные воды в пределах верхних слоев литосферы.

Сформировавшаяся естественная гидрографическая сеть в пространственных пределах Ставропольского края включает в себя участки бассейновых геосистем рек Кубани, Терека, Нижнего Дона и Каспийского моря.

К бассейновой геосистеме Нижнего Дона относятся бассейновая геосистема Западного Маныча. Пространственные пределы бассейновой геосистемы Западного Маныча характеризуются показателями: – площадь водосбора $F_{3M} = 32984 \, \mathrm{km}^2$, объем приземных слоев атмосферы $W_{am.(3.M.)} = 329800 \, \mathrm{km}^3$, объем верхних слоев литосферы $W_{nm.(3.M.)} = 9894 \, \mathrm{km}^3$, суммарный объем пространственных пределов бассейновой геосистемы $W_{B,\Gamma.(3.M.)} = 339694 \, \mathrm{km}^3$.

Основными реками бассейновых геосистем Западного и Восточного Маныча в пространственных пределах Ставропольского края соответственно являются — бассейновая геосистема р. Егорлык и бассейновая геосистема р. Калаус, которые берут свое начало на территории Ставропольского края.

Западный Маныч является левым притоком р. Дон. Это трансграничная река с Республикой Калмыкией (рисунок 1.2) протекает на северо-востоке Ставропольского края. Западный Маныч берет начало на Каспийско-Черноморском водоразделе и образуется из слияния рек Улан-Зуха и Хара-Зуха на территории Калмыкии. Русло реки Западный Маныч проходит по западному уклону Манычской впадины. На территории Ставропольского края река протекает на протяжении 120 км (общая длина 219,3 км).

В настоящее время водный режим р. Западный Маныч в пределах Ставропольского

края полностью определяется устьевыми сбросами реки Калаус, которая получает дополнительные объемы кубанской воды из Большого Ставропольского канала (БСК-1) и Левой ветви Правоегорлыкского канала.

В пределах бассейновой геосистемы Западного Маныча в настоящее время функционирует порядка 43 русловых водохранилищ.

Основные морфометрические характеристики рек и водотоков приведены в таблице 1.2 (Приложение B).

Основные морфологические характеристики рек и водотоков бассейновой геосистемы Восточного Маныча приведены в таблице 1.3 (Приложение В).

Бассейновая геосистема Верхней Кубани характеризуется пространственными пределами, где протекает 419 малых и средних рек, основными из которых являются реки Теберда, Большой Зеленчук ($F_{E.3.} = 2730 \text{ км}^2$), Малый Зеленчук ($F_{M.3.} = 1850 \text{ км}^2$), в пределах которых формируется порядка 3 км³ стока (поверхностного, подземного) по среднемноголетним данным. Пространственные пределы Верхней Кубани (замыкающий створ уч. Невинномысска) занимают суммарный объем $W_{B.K.} = 113300 \text{ км}^3$. из которых приземные слои атмосферы $W_{am.(B.K.)} = 110000 \text{ км}^3$, верхние слои литосферы $W_{nm.(B.K.)} = 4381 \text{ км}^3$, $F_{B.K.} = 110000 \text{ км}^2$.

Характеристика гидрографической сети бассейновой геосистемы Верхней Кубани приведена в таблице 1.4, рисунок 1.6 (Приложение Г).

Бассейновая геосистема Верхней Кубани, в пространственных пределах которой формируются количественные и качественные показатели водных ресурсов, по объему занимают 113300 км³, где площадь водосбора 11000 км², объем атмосферы 110000 км³, объем верхних слоев литосферы (зоны подземных вод) 3300 км³ [14].

Бассейновая геосистема Верхней Кубани включает в себя гидрографическую сеть средних и малых рек и водотоков, основные характеристики которых приведены в таблице 1.5. и 1.6 (Приложение В).

В гидрологическом отношении бассейн Верхней Кубани изучен довольно хорошо. На всех реках, затрагиваемых переброской воды по трассе «Зеленчуки-Кубань», имеются многолетние наблюдения Росгидромета. Анализ данных по режиму рек Верхней Кубани приведен в таблице 1.7 (Приложение В).

В пределах бассейновой геосистемы Верхней Кубани на территории КЧР расположено 3 водохозяйственных водоема питьевого назначения 1 категории: водохранилища Эшкаконское, Головное, Кубанское. Основное назначение — снабжение питьевой водой городов–курортов Кавказских Минеральных вод и населенных пунктов Ставропольского края [14].

Таблица 1.4 – Анализ данных гидрографической сети Верхней Кубани [45,46]

№ п/п	Обозначение реки	Параметр — длина ℓ , км	Параметр — площадь водосбора, <i>F</i> км ²	Взаимодействие с искусственной гидрографической сетью				
	Бассейн Кубани							
1.	река Кубань	870	57900	+				
2.	река Большой Зеленчук	180	1862	-				
3.	река Малый Зеленчук	63	1825	+				
4.	река Невинка	50	602	+				
5.	река Барсучки 1	46	292	+				
6.	река Барсучки 2	39	222	+				
7.	река Овечка	38	180	+				
8.	река Камышеваха	35		-				
9.	река Большая Козьма	32	179	+				
10.	река Барсучки	28	655	+				
И.	река Барсучки 3	25	96	+				
12.	река Неволька	18	нет данных	-				
13.	река Казинка 2-я	15	54	-				
14.	река Клычева	15	68	-				
15.	река Казинка 1-я	14	33	-				
16.	река Назарова	14	39	-				
17.	река Топка	14	61	+				
18.	река Казинка	12	201	-				
19.	река Смертная	11	52					
20.	река Голая	10	28	-				

Реки Верхней Кубани являются источником водоснабжения и приемником сточных вод от населенных пунктов и предприятий КЧР. По данным института «Севкавгипроводхоз», местное водопотребление в бассейне Верхней Кубани выше водозабора в БСК составляет 18,2 млн. $\rm m^3$ в год (0,58 $\rm m^3/c$), в том числе безвозвратно 18,0 млн. $\rm m^3$ (0,53 $\rm m^3/c$). Это составляет около 1% от величины естественного стока р. Кубани в этом районе.

Из Верхней Кубани осуществляется переброска стока в бассейны смежных маловодных рек Калауса и Егорлыка. Переброска осуществляется по двум каналам (таблица 1.8).

Большой Ставропольский и Невинномысский каналы связаны между собой Барсучковским энергетическим трактом. Вода из БСК может быть сброшена по этому тракту в р. Кубань или в Невинномысский канал.

Большой Ставропольский канал отбирает из р. Кубани в створе Усть-Джегутинского головного гидроузла в среднем многолетнем разрезе до 87 % ее стока, в нижний бьеф остается

13 % стока.

Невинномысский канал находится за пределами рассматриваемого участка Верхней Кубани. Замыкающим створом в настоящей работе является г. Невинномысск выше водозабора в Невинномысский канал. Сток р. Кубани в створах выше водозабора в БСК является естественным, в створах ниже водозабора в БСК – искаженным за счет водоотбора в БСК.

Таблица 1.8 – Каналы переброски

Канал	Место водозабора	Дата ввода в действие	Пропускная способность канала в голове, м ³ /с	Средний объем ежегодного изъятия из р. Кубани, млн. м ³
Большой Ставропольский (БСК)	Подпорный головной гидроузел у г. Усть-Джегута	1960 г	180	около 2000
Невинномысский (НК)	Подпорный головной гидроузел у г. Невинномысска	1948 г	75	около 1600 – 1700

Распределение среднего многолетнего стока р. Кубани в створе водозабора в БСК приведено в таблице 1.9.

Таблица 1.9 – Количественное перераспределение стока р. Кубань в створе Усть-Джегутинского водохранилища

Характеристики	Отбор воды в БСК= $180 \text{ м}^3/\text{c}$, санитарный попус нижний бьеф $-5.5 \text{ м}^3/\text{c}$	
	объем стока, млн. м ³	Среднегодовой расход воды, м ³ /с
Естественный приток	2390	75,8
Безвозвратное водопотребление выше БСК	26	0,8
Бытовой приток за вычетом безвозвратного водопотребления	2365	75,0
Забор воды в БСК	2059	65,3
Сток в нижний бьеф Усть-Джегутинского		
гидроузла	307	9,73
в т.ч.: санпропуск	173,5	5,5
холостой сброс	133,5	4,23

Бассейновая геосистема реки Кума по своим количественным показателям занимает второе место на Северном Кавказе. Длина реки 802 км, водосборная площадь бассейна $F_{\kappa y m} = 30,5$ тыс.км², объем приземных слоев атмосферы $W_{am.(\kappa y m)} = 305000$ км³, объем верхних слоев литосферы $W_{nm.(\kappa y m)} = 9150$ км³, суммарный объем пространственных пределов бассейновой геосистемы $W_{E,\Gamma(\kappa y m)} = 314150$ км³.

Гистограмма бассейновой геосистемы рек Верхней Кубани приведена на рисунок 1.7.

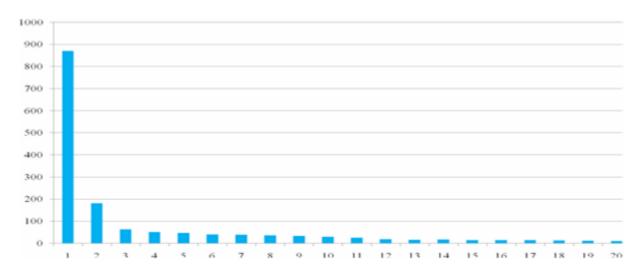


Рисунок 1.7 – Гистограмма бассейновой геосистемы рек Верхней Кубани

Основные морфометрические характеристики бассейновой геосистемы реки Кумы приведены в таблице 1.10 (Приложение В).

Бассейновая геосистема Терека является третьей по величине рек Северного Кавказа. По своей длине она уступает Кубани (870 км) и Куме (802 км). Длина Терека 623 километра. Терек берет свое начало на склонах Главного и Водораздельного хребта Большого Кавказа. Его питает ледник Зильха-Хох, расположенный на высоте 380 метров над уровнем моря. Ниже Водораздельного хребта Терек пересекает Боковой (в Дарьяльском ущелье) и Скалистый хребты, Черные горы.

Пространственные пределы бассейновой геосистемы Терека характеризуются показателями: – площадь водосбора $F_T = 43200$ тыс.км², объем приземных слоев атмосферы $W_{am.(T)} = 432000$ км³, объем верхних слоев литосферы $W_{nm.(T)} = 12960$ км³, суммарный объем пространственных пределов бассейновой геосистемы $W_{Б,\Gamma,(T)} = 444960$ км³.

Вдоль административной границы Ставропольского края река Малка течет на протяжении 40 км (рисунок 1.2), что определяет возможность использования водных ресурсов в хозяйственной деятельности Ставрополья и в части для выработки электрической энергии на малых ГЭС.

Бассейновая геосистема междуречья Кума-Малка включает в себя несколько малых рек (Сухая Горькая, Сухая Падина, Сухая Кума, Кура, Подкумок), основной из которых является река Горькая Балка.

Гистограммы озер Ставропольского края приведены на рисунках 1.10 – 1.12 [45,46]

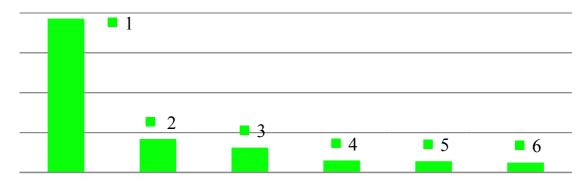


Рисунок 1.10 – Гистограмма озер Ставропольского края с *S* зеркала от 10 до 200 км² [45, 46] 1 – озеро Маныч, 2 – озеро Сенгилевское, 3 – озеро Дадынское, 4 – озеро Соленое, 5 – озеро Большой Довсун, 6 – озеро Соленое (Большое птичье)

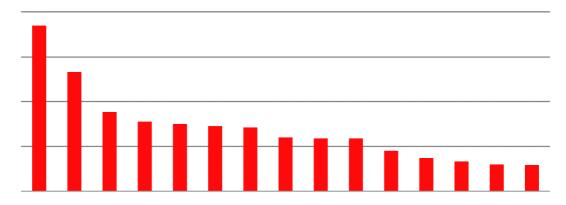


Рисунок 1.11– Гистограмма озер Ставропольского края с *S* зеркала от 1 до 10 км² [45, 46] 7 – озеро Буйвола, 8 – озеро Сага-Бирючья, 9 – озеро Соленое (Петровское), 10 – озеро Подманок (ближний), 11 – озеро Малый Довсун, 12 – озеро Соленое (Северо-Калиновское), 13 – озеро Соленое (Свиное), 14 – озеро Большое Тамбуканское, 15 – озеро Вшивое, 16 – озеро Саго-Оца, 17 – озеро Птичье, 18 – озеро Соленое (Сергиевское), 19 – озеро Зункарь, 20 – озеро Медяника (Курсавское), 21 – озеро Белое

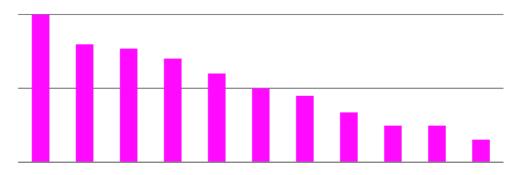


Рисунок 1.12 — Гистограмма озер Ставропольского края с *S* зеркала менее 10 км² [45, 46] 22 — озеро Кравцово, 23 — озеро Лысый Лиман, 24 — озеро Курунта, 25 — озеро Подманок (дальний), 26 — озеро Широкайское, 27 — озеро Барсуковское, 28 — озеро Соленое, 29 — озеро Соленое (Бешпагирское), 30 — озеро Лысогорское (южное), 31 — озеро Малое Тамбуканское, 32 — озеро Лысогорское (северное)

В пространственных пределах бассейновых геосистем Ставропольского края имеется около сорока мелких крупных озер, которые для устройства Малых ГЭС не представляют

практического интереса.

В соответствии с применяемой схемой гидрологического районирования Северного Кавказа в пространственных пределах бассейновых геосистем Ставропольского края выделяются следующие гидрологические структуры, которые представлены на рисунок 1.13 (Приложение Г).

1. Азово-Кубанский артезианский бассейн (АКАБ)

В верхних слоях литосферы в пределах территории АКАБ основные водоносные горизонты (комплексы) имеют широкое площадное распространение.

2. Терско-Кумский артезианский бассейн (ТКАБ)

В верхних слоях литосферы ТКАБ водоносные горизонты имеют широкое площадное распространение. Гидрологические условия позволяют эксплуатировать подземные воды на всей территории ТКАБ

3. Гидрологический район Ставропольского свода (ГРСС)

В верхних слоях литосферы ГРСС развиты водные горизонты четвертичных отложений, верхнего, среднего и нижнего сармата. Для целей хозяйственного использования подземные воды Ставропольского свода считаются малопригодными из-за повышенной их минерализации и санитарно-бактериологическим показателям.

4. Артезианский бассейн Восточного-Маныческого прогиба (АБВ-МП)

В верхних слоях литосферы в пределах АБВ-МП (рисунок 1.11) имеется как напорные, так и грунтовые воды мезо-кайнозойских отложений, которые имеют повышенную и высокую минерализацию. Водовмещающие отложения характеризуются незначительной водообильностью, что обуславливает определенный интерес для организации водоснабжения за счет подземных вод.

5. Артезианский склон Северо-Кавказской Миноклинами (АСС-КМ)

Данная структурная часть верхних слоев литосферы бассейновых геосистем Ставропольского края охватывает особо охраняемого региона — Кавказские Минеральные воды (рисунок 1.11, Приложение Γ). В строении верхних слоев литосферы данной структурной части участвуют отложения верхней коры, мела и палеогена, которые полого падают на север и северо-восток. В условиях моноклинального залегания и чередования водоносных и водоупорных пород создаются благоприятные условия для формирования напорных водоносных горизонтов и комплексов, содержащих подземные воды различной минерализации и состава [94 — 96].

Анализ климатических условий пространственных пределов бассейновых геосистем Кубани, Западного и Восточного Маныча, Кумы, Терека и Междуречье Кума-Малка свидетельствует, что большая часть территории Ставропольского края характеризуется засушливым климатом. Засушливый климат Ставрополья определяет водный баланс на рассматриваемых бассейновых геосистемах. Так, среднегодовой слой осадков определяется в 615 мм $(49,5 \text{ км}^3)$, речной сток в 88 мм $(7,0 \text{ км}^3)$, испарение составляет 527 мм $(42,5 \text{ км}^3)$ км³). Среднегодовой коэффициент стока составляет всего лишь 0,14 (14 % от выпадающих осадков). Густота речной сети (0,13 км/км²), среднегодовой сток рек и коэффициенты стока изменяются в сторону уменьшения от предгорных частей бассейновых геосистем к северовосточным районам. Установлено, что из суммарного годового стока бассейновых геосистем Ставропольского края равного 7 км³, 6.42 км³ приходится на бассейновую геосистему Верхней Кубани (с учетом КЧР). Следовательно, развитие малой гидроэнергетики в значительной степени зависит от водных ресурсов, которые формируются в пространственных пределах Верхней Кубани. Объектные особенности формирования стока (поверхностного, подземного) в пространственных пределах бассейновых геосистем Ставропольского края определили создание и развитие искусственной гидрографической сети в виде водопроводящих каналов, основным из которых является Большой Ставропольский канал (БСК-1, БСК-2, БСК-3, БСК-4) и ряд других, которые приведены в таблице 1.11, 1.12. (Приложение В) и на рисунке 1.14 (Приложение Г).

Дополнительным регулирующим резервом в формировании искусственной гидрографической сети являются созданные водохранилища, перечень которых приводится в таблице 1.13, 1.14 (Приложение В).

Из каналов наполняются 53 крупных водохранилища, а часть водных ресурсов используется для подпитки малых рек и озер.

Водозаборы в искусственную гидрографическую сеть канала осуществляются рек рассматриваемых бассейновых геосистем.

Из реки Кубани производится отбор воды с расходом $Q_K = 255 \text{ m}^3/\text{c}$.

Из реки Терека производится отбор воды с расходом $Q_T = 100 \text{ м}^3/\text{c}$.

Из реки Кумы производится отбор воды с расходом $Q_{KM} = 83,4 \text{ m}^3/\text{c}$.

Из рек Баксан-Малки производится отбор воды с расходом Q_{E-M} = 30 м³/с.

Из реки Малки производится отбор воды с расходом $Q_M = 14 \text{ m}^3/\text{c}$.

Из реки Подкумок производится отбор воды с расходом $Q_{\Pi} = 2.7 \text{ м}^3/\text{c}$.

Суммарный отбор воды в искусственную гидрографическую сеть из рек Кубани, Терека, Кумы, Баксан-Малки, Малки и Подкумка составляет 485,1 м³/с, что определяет устойчивое развитие всех отраслей хозяйственной деятельности, в том числе и развитие малой гидроэнергетики.

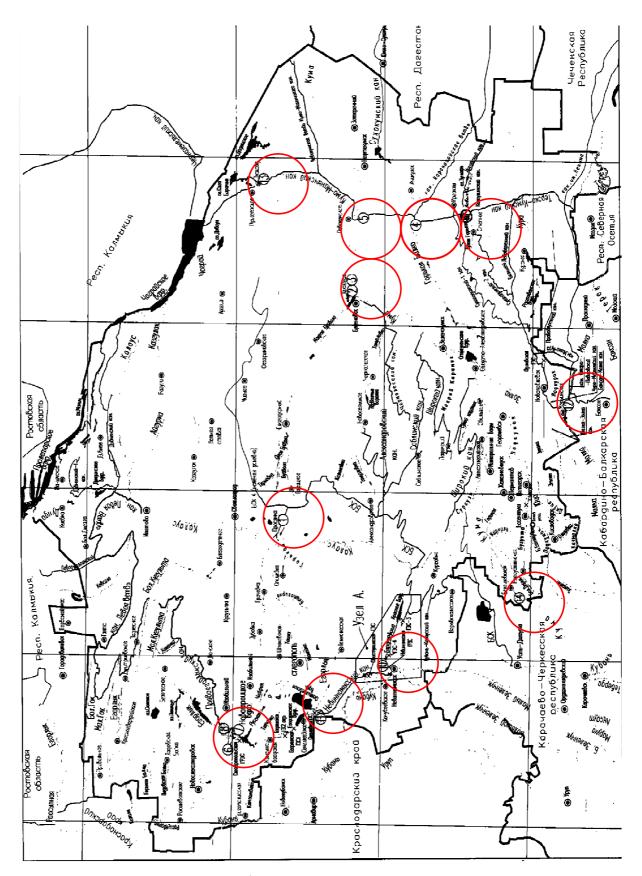


Рисунок 1.12 – Гидрографическая сеть Ставропольского края [45, 46]

Естественные ресурсы подземных вод на территории Ставропольского края составляют приведены в таблице 1.15.

Таблица 1.15 – Естественные ресурсы подземных вод на территории Ставропольского края

Бассейн	тыс. м ³ /сут.			
Бассеин	Всего	до 1 г/дм ³	1–1,5 г/дм ³	1,5–3 г/дм ³
Азово-Кубанский артезианский бассейн (АКАБ)	82	46	25	10
Восточно-Предкавказский артезианский бассейн (ВПАБ)	2257	2209	37	11
Большекавказский бассейн (БКБ)	32	32	-	-
Всего:	2372	2287	62	21

1.4.3 Инженерно-геологические условия и экзогенные геологические процессы

Территория Ставропольского края, которая расположена в пределах двух крупных инженерно-геологических провинций: горных массивов Большого Кавказа и Предкавказской равнины, отличается сложными инженерно-геологическими условиями приведены в таблице 1.16 (Приложение В). На основе инженерно-геологического районирования края, выделены территории с различными по сложности условиями для градостроительного освоения.

Баклановский участок проектируемых работ располагается в пределах I-III надпойменных террас реки Егорлык в районе ст. Баклановской. Условия для строительства – сложные из-за подтопления, боковой речной эрозии, денудации и оврагообразования.

Буденновский участок расположен в долине р. Кумы в районе с. Покойное. Условия для строительства – средние, осложняются развитием береговой эрозии.

Кара-Тюбинский участок расположен на правом берегу Горькой балки, на водораздельном склоне, по которому проходит Терско-Кумский канал. Условия для строительства — средние, осложняются процессами подтопления, в меньшей степени — просадками суглинистых грунтов.

По данным мониторинга на территории Ставропольского края зафиксировано развитие 3088 современных оползней, из них 456 развиваются на территории региона Кавказских Минеральных Вод и 353 оползня на территории г. Ставрополя. Суммарная площадь оползневых зон, в пределах которых сосредоточены все состоящие на учете современные оползни, и где возможно образование новых оползневых форм, в Ставропольском крае составляет 1441,2 км². При этом основные площади распространения оползневых процессов и потенциально-

оползневые территории приурочены к западной половине Ставропольского края. Пораженность территории, на которой распространены оползневые процессы, составляет в целом на территории равнинного Ставрополья ~ 3 %.

В активизации оползневых процессов существенно возросла роль антропогенного фактора. Помимо общей техногенной нагрузки на грунты склонов, проявляющейся в виде многочисленных утечек из водопроводных и канализационных сетей, антропогенное воздействие на оползни всё чаще стало выражаться посредством грубых нарушений условий равновесия оползневых склонов. Особенно много таких нарушений выявлено в пределах г. Ставрополя, где 51 оползень развивается в условиях негативного техногенного влияния. Основной, прогрессирующий в последние годы, вид техногенных нарушений – бесконтрольные, несанкционированные пригрузки оползневых и потенциально-оползневых склонов зданиями и сооружениями, грунтами, строительными и бытовыми отходами [12].

По степени овражности территорию Ставропольской возвышенности можно разделить на три района. Южный район охватывает высокие останцовые плато и глубокие эрозионные котловины. Здесь преобладают площади с очень сильным (более $1,0~\text{км/км}^2$) и сильным ($0,7-1,0~\text{км/км}^2$) овражным расчленением. Центральный район занимает возвышенная равнина, здесь господствует поверхность со средней ($0,4-0,7~\text{км/км}^2$) и слабой ($0,1-0,4~\text{км/км}^2$) заовраженностью. Северо-восточный район охватывает низменные равнины, оврагообразование наблюдается здесь только вдоль долин и балок со слабым и очень слабым овражным расчленением ($0,03-0,1~\text{км/км}^2$).

Геологическая летопись свидетельствует о том, что рельеф края формировался в кайнозое в процессе преобладающего воздымания земной поверхности. Из моря сперва поднялся Пастбищный хребет, затем предгорья Кавказа и Ставропольская возвышенность и последними – низменные равнины. Современное развитие рельефа зависит от тектонических движений и действия экзогенных (внешних) сил.

В Ставропольском крае часто происходят землетрясения. Они связаны с тектоническими движениями по разломам. Чаще всего они случаются в районе Кавказских Минеральных Вод, где с 1771 года зарегистрировано более сорока землетрясений силой 4 – 7 баллов по 12-балльной шкале. На Ставропольской возвышенности и Воровсколесских высотах землетрясения достигают силы 5 – 8 баллов. Самое сильное, восьмибалльное, землетрясение произошло в 1971 году в поселке Цимлянском, возле горы Стрижамент. При землетрясениях иногда возникают крупные оползни и обвалы. Следами таких стихийных бедствий являются: гора Развалка, расколотая на огромные глыбы; Семистожки – крупный обвально-оползневой останец на Воровсколесских высотах и Каменный хаос – обвальные нагромождения глыб известняка на склонах горы Стрижамент.

Согласно сейсмическим картам Ставропольский край делится на три зоны – семибалльную, охватывающую горы и предгорья; шестибалльную, включающую южную и центральную части Ставропольской возвышенности и юг Терско-Кумской низменности, и пятибалльную, в которую входит северная часть территории края (рисунок1.2). Один раз в десять тысяч лет, по расчетам сейсмологов, в крае могут происходить восьмибалльные землетрясения.

На основе результатов анализа и исследований природных и хозяйственных характеристик бассейновых геосистем составлена карта-схема природно-экологического каркаса, (рисунок 1.13, Приложение Γ), карта схема распространения экзогенных геологических процессов (рисунок 1.14, Приложение Γ) и карта-схема районирования Ставропольского края по условиям строительства (рисунок 1.15, Приложение Γ) [88].

1.5 Выводы по первой главе

- 1. На основе анализа архивных материалов и результатов исследований физикогеографических, климатических, геоморфологических и гидрографических, геологического строения и полезных ископаемых, гидрогеологических и условий защищенности подземных вод от загрязнения, почвенного покрова, растительности и животного мира, особо охраняемых территорий, памятников природы, археологии и культуры, рекреационных ресурсов составлена карта-схемы природно-экологического каркаса бассейновых геосистем Ставропольского края (рисунок 1.15), схема распространения (рисунок 1.16) опасных экзогенных геологических процессов и карта-схема районирования бассейновых геосистем Ставропольского края по условиям строительства (рисунок 1.17), в том числе на участке намечаемого строительства.
- 2. Результаты анализа и исследований природных и хозяйственных характеристик бассейновых геосистем Ставропольского края явились базовой основой в проведении комплексных исследований по оценке экологического состояния, как фактора по обеспечению экологической безопасности на участках намечаемого строительства водохозяйственных объектов связанных с использованием водно-энергетического потенциала на действующих внутрисистемных гидротехнических сооружений.

ГЛАВА 2 РАЗРАБОТКА ЭЛЕМЕНТОВ МЕТОДОЛОГИИ ПО СОВЕРШЕНСТВОВАНИЮ ОВОС ВОДОХОЗЯЙСТВЕННЫХ ОБЪЕКТОВ, КАК ФАКТОРА ОБЕСПЕЧЕНИЯ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ

2.1 Основы методологии оценки воздействия на природные среды водохозяйственных объектов оросительных систем

При анализе методологии можно выделить философскую и специально-научную. В первой (философской) методологии материализм и диалектика являются основой научного познания. Вторая (специально-научная методология) характеризуется концептуальными направлениями, методикой и техникой исследования. При рассмотрении методологии ОВОС ключевой позицией выступает обобщенная постановка вводно-экологических проблем [7, 12].

Методология ОВОС водохозяйственных объектов изучает системные подходы взаимодействия данных объектов со структурными образованиями (биотическими, абиотическими) основных интересов населения и природной среды [7].

основываясь на теорию современного естествознания, Автор [7], взаимодействия элементов природной среды, водохозяйственного объекта с основными интересами населения, представляет как ПТС (природно-техническую систему) – «Природная среда – Водохозяйственный объект – Население» («П.С.-В.О.-Н»), которая работает в пределах исследуемой бассейновой геосистемы. «П.С.-В.О.-Н», концептуальная ПТС как рассматривается автором [7] как открытая, емкая, изменяющаяся, устойчиво-неравновесная система, в которой непрерывно проходят процессы самоорганизации между техногенными и природными структурными образованиями [45, 46].

Бассейновые геосистемы более высокого уровня оказывают влияние на структурные изменения в процессах самоорганизации бассейновых геосистем более низкого уровня [7]. В свою очередь, структурные образования бассейновых геосистем нижнего уровня ограниченно воздействуют на процессы, происходящие при самоорганизации бассейновых геосистем более высокого иерархического уровня. Для того чтобы ПТС «П.С.-В.О.-Н» могла функционировать устойчиво, необходимо, чтобы каждый элемент ПТС «П.С.-В.О.-Н» находился в структуре среды наиболее высокого иерирархического уровня [7]. Аналогия между механизмами и принципами вселенских структур, и механизмами и принципами действующими на уровне локальных бассейновых геосистем рассматривается как рабочая гипотеза компромиссного характера [45, 46].

В реальности все процессы и действия взаимосвязаны, развиваясь как единая система, подчиняясь основным природным системным законам преобразования. Деятельность, связанная с применением водных ресурсов, автор относит к элементам природной среды и, следовательно, целенаправленная деятельность, к примеру, создание ПТС «П.С.-В.О.-Н» для выработки электрической энергии на ГЭС, подчинена и взаимосвязана с действиями природных процессов протекающих в атмосфере, гидросфере и литосфере Земли [7].

Рассматривая хозяйственную деятельность по применению водных ресурсов за объект исследования, в методологическом плане исследуемый объект можно отнести на более высокий структурный уровень системных образований, с уровня локальной бассейновой геосистемы, [7]. Этот методологический подход дает возможность изучать процессы структурных изменений, принципы саморегулирования и самоорганизации в ПТС «П.С.-В.О.-Н», в которых ключевое место занимает – река, канал. Использование этого методологического подхода в ОВОС дает возможность устанавливать единство целей, ценностей, механизм экологической приемлемости и эффективности целенаправленных действий, присущих системам, внугри которых как элемент функционирует водохозяйственный объект [121 – 122].

Под системностью (целостностью) в ПТС «П.С.-В.О.-Н» необходимо понимать как целостное, имеющее свою внутреннюю элементную структуру, состоящую из отдельных частей (элементов) и соответствующих взаимосвязей, нужных для выполнения конкретных действий в условиях природной среды [7]. Каждая часть или отдельный элемент ПТС «П.С.-В.О.-Н» выполняет свои заданные функции, а интеграция всех отдельных частей обеспечивает достижение единой поставленной цели.

ПТС «П.С.-В.О.-Н», к примеру, для целей выработки электрической Применение энергии на малой ГЭС, обусловливает комплекс внутрисистемных преобразований природных структур (гидрографической сети, гидрологических режимов, верхних слоев литосферы, растительности и др.), где ведущая роль должна оставаться за окружающей природной средой при взаимодействии с комплексом объектов природообустройства и водопользования. В ПТС «П.С.-В.О.-Н» под отражением объективной действительности следует понимать свойство системы в отражении (применении) количественных и качественных характеристик гидрологических процессов естественных В технологических схемах, адаптации технологических схем к процессам жизнедеятельности природного мира и населения находящегося в зоне влияния водохозяйственных объектов [7]. Отражение несет в себе данные об объектах деятельности и способствует более детальному пониманию объективных связей между направленной хозяйственной деятельностью и природной средой [45, 46].

В методологии ОВОС отражение объективной действительности обусловливается естественным (фоновым) состоянием структурных образований в пространственных пределах

рассматриваемой бассейновой геосистемы с одной стороны, и ожидаемых (виртуальных) изменений в структурных образованиях водохозяйственных объектов и водопользования с другой стороны [7]. Взаимодействие естественных структурных образований с объектами водопользования, к примеру, каскадом малых ГЭС, и населением в ПТС «П.С.-В.О.-Н» обусловливают определенные изменения в непрерывных процессах системных преобразований. При выполнении ОВОС, важным является установить, какие преобразования занимают ведущую (доминирующую) роль в ПТС «П.С.-В.О.-Н» [45, 46].

Если естественные изменения доминируют над субъективными преобразованиями, то ПТС «П.С.-В.О.-Н» будет сохранять тенденцию к устойчивому развитию. В случае преобладания искусственных (субъективных) преобразований над естественными (объективными) обусловливается тенденция на увеличение внешних нагрузок (антропогенных) на природные структурные образования ПТС «П.С.-В.О.-Н» и прежде всего на гидрографическую сеть, почвенный покров и растительность, верхние слои литосферы в активных зонах влияния объектов природообустройства, водопользования (пойменная и прибрежная полоса, зоны активной фильтрации и подтопления и др.) в пределах рассматриваем бассейновой геосистемы [74].

В ОВОС водохозяйственных объектов в пределах исследуемой бассейновой геосистемы, основным также является оценка комплексности и целостности ПТС «П.С.-В.О.-Н» обусловливается в самоорганизующем принципе формирования структурных образований на ее внутренних иерархических уровнях.

Самоорганизация, как в узко естественных, так и в ПТС «П.С.-В.О.-Н» обусловливается непрерывными комплексными процессами по структуризации и усложнению структурных образований (элементов) и их связей между собой и внешней средой [72, 73].

При выполнении ОВОС важным является определение направленности вектора самоорганизации в создаваемой ПТС «П.С.-В.О.-Н» и сравнение направленности этого вектора с вектором самоорганизации природной среды в пространственных пределах бассейновой геосистемы [7]. К структурным (комплексным) образованиям, которые необходимо рассматривать в процессах по упорядочению и усложнению можно отнести: природные – климат, атмосфера приземных слоев, геологическое строение, гидрографическая речная сеть, почвенный покров, растительность, животный мир; техногенные – комплекс гидротехнических сооружений малой ГЭС, подъездные и эксплуатационные дороги, системы связи, ЛЭП и др.

Взаимодействие на всех иерархических уровнях как по горизонтали, так и по вертикали структурных образований в ПТС «П.С.-В.О.-Н» происходит при характерных условиях природного (гидрологические, гидрогеологические, морфометрических характеристик водотоков гидрографической сети, инженерно-геологического и ландшафтного районирования и др.) и техногенного (характером размещения гидротехнических и др. сооружений, способах и

технологий использования водных ресурсов и др.) происхождения, которые обусловливают единство и многогранность структурных образований, изменчивость и развитие перехода одних неравновесных в другие неравновесные состояния структурных образований, эмерджентность получаемых эффектов. Такое взаимодействие структурных образований обусловливает процессы самоорганизации в ПТС «П.С.-В.О.-Н» [120 – 122].

Мерой самоорганизации структурных образований в ПТС «П.С.-В.О.-Н» по использованию водных ресурсов исходя из энергетического принципа функционирования и развития открытых устойчиво-неравновесных систем, может являться балансовое соотношение свободной ($E_{\text{свб}}$) и связанной ($E_{\text{свз}}$) энергии по отношению к полной энергии ($E_{\text{пол}}$) [7, 45, 46]:

$$E_{\text{пол}} = E_{\text{CBG}} + E_{\text{CB3}} \left[L^5 T^4 \right] \tag{2.1}$$

Если в исследуемой ПТС «П.С.-В.О.-Н» наблюдается преобладание свободной энергии (E_{cs6}) способной выполнять работу по приведению в соответствие и усложнению структурных образований над связанной, не способной совершать никакой работы, энергией (E_{cs3}) , то в системе наблюдается тенденция к непрерывности процессов самоорганизации в структурных образованиях ПТС «П.С.-В.О.-Н», в которых главенствующая роль отводится окружающей природной средой. При преобладании отработанной энергии (E_{cs3}) над массами свободной энергии (E_{cs6}) наблюдантся тенденция роста энтропии в ПТС «П.С.-В.О.-Н» и соответственно это приводит к снижению функциональной способность выполнять заданную функцию с определенной эффективность за определенное время и постепенной деградации. Поэтому, при ОВОС техногенных структурных образований, к примеру, в виде комплекса гидротехнических сооружений на гидрографической сети бассейновой геосистемы, одним из наиболее важных методологических элементов является экологическая приемлемость водохозяйственных объектов [45, 46].

Экологическая приемлемость техногенных структурных образований во взаимосвязи с природными структурными образованиями на уровне ПТС «П.С.-В.О.-Н» обусловливается преобразованиями внутренних системных структурных образований, где ведущая роль должна оставаться за природной средой.

Главенствующая роль природной среды в процессах изменений и улучшений в ПТС «П.С.-В.О.-Н» обусловливается виртуальными преобразованиями форм энергии и вещества. Таким образом, преобразования в ПТС «П.С.-В.О.-Н» можно выражать как количественно, так и качественно.

Количественное выражение форм вещества ожидаемых преобразований в ПТС «П.С.-В.О.-Н», в которой в качестве техногенных образований возводятся комплекс ГТС малой ГЭС на водотоках гидрографической сети, обусловливается внутрисистемным перераспределением (регулированием) жидкого и твердого стока определяемые по результатам многолетних

гидрометрических наблюдений.

Количественное выражение форм энергии в ожидаемых преобразованиях в рассматриваемых ПТС «П.С.-В.О.-Н» обусловливается, к примеру, выработкой электрической энергии на малых ГЭС, где потенциальная энергия водного потока преобразуется в электрическую.

Качественное выражение в ожидаемых преобразованиях ПТС «П.С.-В.О.-Н» обусловливается отдельными изменениями гидрохимического и гидробиологического состава вод в водотоках, каналах и в других структурных образованиях.

Протекающие постоянные во времени преобразования в рассматриваемых ПТС «П.С.-В.О.-Н», обусловливающие самоорганизацию структурных образований, происходят под воздействием внутренних и внешних потоков энергии и вещества, от которых зависит состояние (равновесное, неравновесное) системы [7].

Состояние природной среды ПТС «П.С.-В.О.-Н» обусловливается диссипативными или антидиссипативными процессами, принципиальное различие между которыми определяется направленностью движения. Доминирование диссипативных процессов в ПТС «П.С.-В.О.-Н», обусловливает тенденцию роста связанной энергии ($E_{\rm cв3}$), или энтропии и соответственно разупорядочению структурных образований. Доминирование антидиссипативных процессов обусловливает тенденцию роста свободной энергии ($E_{\rm cв6}$) поступающей в систему, активизации процессов по упорядочению и усложнению структурных образований и соответственно целенаправленному функциональному развитию рассматриваемой ПТС «П.С.-В.О.-Н» [7].

Исходя из закона сохранения мощности Лангража-Максвелла, диссипативные и антидиссипативные процессы преобразований в ПТС «П.С.-В.О.-Н» можно выразить уравнением:

$$N = P + G [L^5 T^{-5}] (2.2)$$

где N – полная мощность системы; P – полезная мощность; G – потери мощности.

Из уравнения (2.2) следует, что полезная мощность и мощность потерь проективно инверсные, т.е. любое изменение полезной мощности (P) компенсируется изменением мощности потерь (G) под контролем полной мощности (N). В открытых, устойчивонеравновесных ПТС «П.С. – В.О. – Н», в которых $E_{\text{пол}} \neq \text{const}$, $N \neq 0$, $E_{\text{свб}} \neq \text{min}$, $P \neq \text{min}$, $E_{\text{св3}} \neq \text{max}$, $G \neq \text{max}$, где $E_{\text{пол}}$, $E_{\text{свб}}$, $E_{\text{св3}}$ – соответственно – полная свободная, свободная и связанная или отработанная энергия, диссипативные процессы в обобщенном виде выражаются неравенствами $E_{\text{св3}} > 0$ или G > 0, антидиссипативные процессы выражаются неравенствами $E_{\text{св3}} < 0$ или G < 0. Переходные процессы с одного иерархического уровня на более высокий или менее низкий равенством $E_{\text{св3}} = 0$ или G = 0 [7].

В антидиссипативных процессах, где $E_{cb3} < 0$ и G < 0, устойчивый рост свободной энергии

 E_{ce6} способствует системе к росту совершать внешнюю работу во времени и соответственно убывать мощности потерь G, а также обеспечивать целостность ПТС «П.С.-В.О.-Н» [79 – 81].

Целостность ПТС «П.С.-В.О.-Н» сохраняется до тех пор, пока в ней происходят виртуальные преобразования, которые возможны, пока наблюдаются тенденции убывания мощности потерь (G) и возможен непрерывный рост свободной энергии ($E_{cв6}$). От скорости и направленности процессов самоорганизации в системе и окружающей ее среды зависит временный период жизнедеятельности и работы ПТС «П.С.-В.О.-Н». Необходимым условием протекания процессов самоорганизации в ПТС «П.С.-В.О.-Н» является создание условий соответствия векторов: самоорганизации естественной среды и структурных техногенных образований, потребностей и наличия ресурсов для функционирования в экологически приемлемых режимах структурных техногенных образований.

Процессы самоорганизации структурных образований естественной среды пространственных пределах бассейновой геосистемы происходят под воздействием непрерывных потоков солнечной радиации, поступающей из внешней среды (космоса). Потоки солнечной радиации, поступающие в ПТС «П.С.-В.О.-Н», воздействуют на широкий круг явлений от конвективных структур в жидкостях и абиотических компонентах до биологических явлений в биотических компонентах, что обусловливает необратимость протекающих процессов. Необратимые процессы служат движущей силе, которая создает порядок и соответственно упорядоченность в природных структурных образованиях ПТС «П.С.-В.О.-Н». Направленность процесса упорядоченности ИЛИ самоорганизации определяется доминированием антидиссипативных процессов над диссипативными, т.е. когда $E_{cg3} < 0$, G < 0.

Для протекания процессов самоорганизации техногенных структурных образований так же, как и для природных структурных образований, требуется непрерывная энергетическая Такая энергетическая подпитка техногенных структурных образований в подпитка. пространственных пределах бассейновой геосистемы обусловливается эксплуатационными ресурсными затратами. Следовательно, для обеспечения нужной направленности процесса самоорганизации техногенных структурных образований в рассматриваемой ПТС «П.С.-В.О.-Н», необходима достаточная ресурсная подпитка, которая бы обеспечивала превалирование антидиссипативных процессов над диссипативными. Для техногенных структурных образований ПТС «П.С.-В.О.-Н» по использованию водных ресурсов самоорганизация в обобщенном виде обусловливается поэтапным адаптированием водохозяйственных объектов в окружающей среде природных структурных образований, где ведущая роль должна оставаться за последней. Характерным примером адаптированных объектов водопользования к окружающей среде может служить сеть каналов протяженностью более 1,2 тыс. км в долине Теукан на юге Мексики, которая была построена 2,5 тыс. лет назад [56 - 61]. Подобная

адаптация техногенных структурных образований к природным структурным образованиям обусловливается достаточной экологической приемлемостью водохозяйственных объектов водопользования в системе ПТС «П.С.-В.О.-Н».

Обобщенная структура модели ПТС «П.С.-В.О.-Н» включает в себя три базовых блока:
1) природная среда; 2) водохозяйственный объект как техногенный объект; 3) население, которое проживает в зонах влияния объекта деятельности.

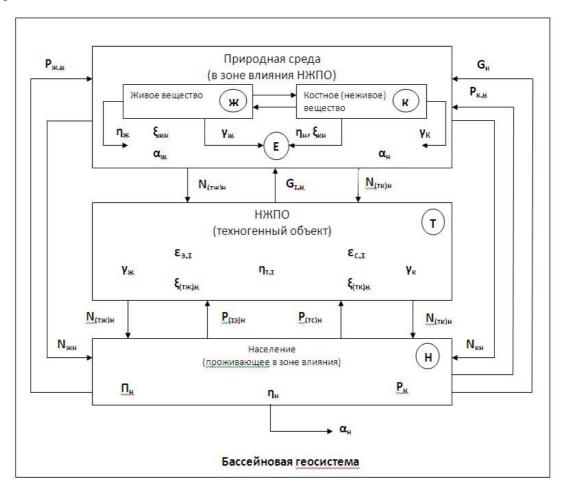


Рисунок 2.1 – Обобщенная структура модели ПТС «Природная среда – Водохозяйственный объект – Население» [45,46]

Каждый из базовых блоков рисунок 2.1 [45, 46] включает в себя иерархию внутренних блоков, динамика которых согласовывается с базовым главным блоком. Динамика главного блока должна быть согласована с фундаментальными законами природы – законами сохранения и развития.

В методологии оценки воздействия на природные среды водохозяйственных объектов оросительных систем действующих в пространственных пределах локальных бассейновых геосистем важным является изучение взаимодействия компонентов живой и неживой природы.

2.2 Основы процессов взаимодействия компонентов живой и неживой природы в пределах локальных бассейновых геосистем

Оценка и прогноз изменений состояния окружающей среды как на локальном уровне бассейновых геосистем, так и глобальном уровне биосферы Земли базируется на ряде принципиальных понятий связанных с процессами взаимодействия живой и неживой природы [121 – 123].

Органическую жизнь следует понимать как непрерывный процесс обмена веществ, обусловливаемый круговоротом веществ в природе. Обмен веществ наблюдается как в живой, так и неживой природе. Он может быть специфическим признаком живой природы, если указана противоположность направления этого процесса в явлениях неживой и живой природы. В результате обмена веществ проявляются два противоположных результата: увеличение свободной энергии $E_{\text{свб}}$; уменьшение свободной энергии.

Известно, что в эволюции неживой природы, предшествовавшей возникновению жизни, доминировали процессы уменьшения свободной энергии (E_{ces}). В эволюции живой природы доминируют процессы, которые приводят к увеличению свободной энергии, включая явления общественной жизни. В хозяйственной деятельности этот принцип приводит к росту энерговооруженности труда и соответственно росту производительности труда. С термодинамической точки зрения это вынужденный процесс, который не может протекать самопроизвольно. Рост свободной энергии в рассматриваемых системах всегда обусловливается непрерывными потоками лучистой энергии Солнца мощностью 10^{14} кВт.

Противоположность обмена веществ в химических реакциях обусловливается экзотермическими (выделением энергии) и эндотермическими (поглащением энергии) процессами.

Экзотермические – самопроизвольные процессы протекают за счет собственной ранее накопленной энергии. Эндотермические – вынужденные процессы происходят при притоке энергии извне.

Известно, что как в живой природе, так и в неживой природе непрерывно протекают эндотермические и экзотермические процессы, но важно знать какие процессы доминируют. Если эндотермические и экзотермические процессы протекают с одинаковой скоростью, то полная энергия системы не меняется. Рост клетки, растения, животного требует доминирования эндотермических процессов над экзотермическими. Доминирование эндотермических процессов над экзотермическими определяет направление развития органической жизни в пространственных пределах как Биосферы Земли, так и в пределах локальных бассейновых

геосистем. В живых организмах (растениях, животных) лучистая энергия Солнца накапливается и переходит в такую форму, которая создает живые организмы, обладающие потенциальным бессмертием, не уменьшающим, а увеличивающим действенную энергию исходного солнечного луча. Живое вещество накапливает и создает, а не рассеивает энергию. Фотосинтез всех земных растений следует рассматривать как «вынужденный процесс», который протекает при непрерывном потоке энергии Солнца.

Сохранение любого биологического вида определяется доминированием антидиссипативных (накопление энергии) процессов над диссипативными (рассеяние энергии) процессами.

Использование потоков энергии, как в сельскохозяйственном производстве, так и в других видах хозяйственной деятельности связано с изменением этих потоков при сохранении мощности. В этом понимании все обычные машины, механизмы и технологии являются обобщенными каналами передачи потока энергии (мошности) от источника к определенной нагрузке и задача состоит лишь в том, как с большим коэффициентом полезного действия обеспечить передачу этого потока энергии от источника к нагрузке. Применительно для хозяйственной деятельности по использованию водных ресурсов в пределах локальных бассейновых геосистем каналами передачи энергии источника (Солнца) otводохозяйственным объектам будут являться техногенные компоненты (комплексы гидротехнических сооружений, системы орошения и осущения и др.).

В пространственных пределах бассейновых геосистем, относящихся к классу открытых неравновесных систем, непрерывно взаимодействуют между собой живая часть природы в качестве биотических компонентов с неживой частью природы в виде абиотических компонентов, образуя в процессе взаимодействия целостную природную систему на локальном иерархическом уровне.

Фундаментальное общее определяется существованием живого и косного вещества в единой универсальной системе пространства-времени $\left[L^RT^S\right]$ и подчинением определенным универсальным законам природы.

Принципиальное различие заключается в противоположном направлении их эволюции.

Сущностью взаимодействия процессов живого и косного вещества планеты является сохранения кругооборота как на Земле, так и бассейновой геосистеме (вещества, энергии) под контролем закона сохранения потока энергии (мощности) [45, 46].

$$N_{\text{пол.3}} = P_{\text{ж.к}} + G_{\text{ж.к}} \left[L^5 T^{-5} \right]$$
 (2.3)

где $N_{non. 3}$ – суммарная или полная мощность на входе в систему;

 $P_{\mathcal{H}.K}$ – суммарная полезная мощность живого и косного вещества системы;

 $G_{\infty,\kappa}$ – суммарная мощность потерь живого и косного вещества системы.

Для локальных бассейновых геосистем закон сохранения мощности на входе в систему и на выходе из системы выражается аналогичным образом [45, 46]:

$$N_{\text{пол.Б}} = P_{\text{ж.к(Б)}} + G_{\text{ж.к(Б)}} \left[L^5 T^{-5} \right]$$
 (2.4)

Живое вещество выполняет активную, управляющую функцию положительной обратной связи накопления (антидиссипации) свободной энергии.

Косное вещество выполняет пассивную естественную функцию – диссипации свободной энергии.

Изменение свободной энергии $P_{\text{ж.к.}}$, $E_{\text{свб}}$ и $G_{\text{ж.к.}}$, $E_{\text{свб}}$ взаимно компенсируется под контролем полной мощности $N_{\text{пол.}}$

В процессе взаимодействия диссипативных и антидиссипативных процессов могут иметь место два предельных случая неустойчивого равновесия, определяющих «жизненный» цикл явлений жизни как на глобальном уровне планеты Земля, так и на локальном уровне локальных бассейновых геосистем.

Критическая ситуация первого рода обустраивается приблизительным равенством полной мощности $N_{\text{пол}}$ на входе в систему потерям мощности на выходе из системы $G_{\text{ж.к.}}$:

$$N_{\text{пол}} \cong G_{\text{ж к}} \tag{2.5}$$

Для выхода из критической ситуации второго рода необходимо привлечение ресурсов извне посредством расширения пространственно-временных границ рассматриваемой системы. Применительно для локальных бассейновых геосистем, в пространственных пределах которых ведется хозяйственная деятельность, расширение границ связывается с переходом на более высокий иерархический уровень бассейновой геосистемы. К примеру от бассейновой геосистемы первого уровня (приток 3 или 4 порядка) на второй уровень (приток 2 или 3 порядка).

Взаимодействие живого и косного вещества, как две формы движения материи, обусловливают собой постулаты изменений.

Сущностью эволюции косного вещества (абиотические компоненты) как целого является принцип диссипации свободной энергии. ($E_{\rm cвб}$), т.е. способность к совершению внешней работы с течением времени $P_{\rm K}$ уменьшается, а мощность потерь $G_{\rm K}$ увеличивается [45,46]:

$$P_{\kappa}(f) < 0 \Big[L^{5} T^{-5} \Big]; \qquad G_{\kappa}(t) > 0 \Big[L^{5} T^{-5} \Big]$$
 (2.6)

Косное вещество представляет собой хроноцелостную открытую неравновесную диссипативную систему как в глобальном масштабе Земли, так и соответственно локальном

уровне бассейновых геосистем, где прошлое, настоящее и будущее есть одно реальное ограниченное целое.

Сущностью эволюции живого вещества как целого является принцип устойчивой неравновесности, в соответствии с которым живое вещество представляет собой хроноцелостную открытую неравновесную антидисипативную систему, где способность к совершению внешней работы $P_{\rm x}$ с течением времени не убывает, а мощность потерь системы в целом $G_{\rm x}$ не увеличивается [45, 46]:

$$P_{\kappa}(t) \ge 0; \qquad G_{\kappa}(t) \le 0$$
 (2.7)

При эволюции живых систем выживают те, которые своей жизнью увеличивают свободную энергию (второй биогеохимический принцип В. Вернадского). Следовательно, эволюция живых систем направлена в сторону хроноцелостности.

Как глобальная модель системы «Природа – Общество – Человек», так и на уровне локальной бассейновой геосистемы учитывается взаимодействие основных факторов устойчивого развития – динамику потребностей Человека; динамику возможностей и потребностей общества; динамику мощности (производительности ресурсов) природной среды.

Обобщенная структура глобальной модели системы «Природа – Общество – Человек» является многоярусной, включающая в себя три базовых блока: «Человечество – Природа»; «Человек – Природа»; «Человек – Человечество», где блок «Человек-Природа» в пределах бассейновой геосистемы рассматривается как система «Население – Природная среда».

Динамика развития каждого яруса (подсистемы) согласовывается с естественными законами развития, которые обусловливаются динамикой возможностей удовлетворять потребности, как в текущем времени, так и в перспективе.

Сами понятия возможность и потребность как на уровне глобальной системы «Природа – Общество – Человек», так и на более низких иерархических уровнях локальной бассейновых геосистем. Одним из наиболее важных базовых блоков локальной системы является «Население – Природная среда». Структурная схема модели блока «Население – Природная среда» представлена на рисунке 2.2.

На входе блока «Население» (общество) (рисунок 2.2) [45, 46] находится поток ресурсов получаемые населением из живой и из неживой природы, а также полезная мощность (P) населения, расходуемая на сохранение и развитие его жизнедеятельности. Потоки ресурсов выражаются в единицах мощности (N).

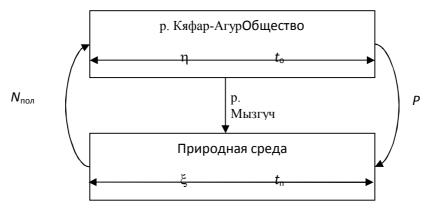


Рисунок 2.2 – Структурная схема модели блока «Население – Природа» [45, 46]

На выходе суммарная полная мощность (*P*) населения и отходы хозяйственной деятельности, которые обусловлены потерями энергии на разных стадиях деятельности население. Функциональное уравнение блока «Население» можно представить в виде [44, 45]:

$$\Pi(t) = \int_{0}^{T} \left[\left(N_{\mathrm{H}}(t) + N_{\mathrm{K}}(t) \cdot \eta_{r}(t) - \Pi(t) \cdot \alpha_{r} - P(t) \right) \right] dt$$
(2.8)

где Π – накопленный потенциал (запас работоспособности) населения в энергетическом выражении;

P – полезная мощность населения [44, 45].

$$P(t) = \Pi(t) \cdot V_r(t)$$

где $N_{\rm H},~N_{\rm W}$ – мощности, характеризующие потоки ресурсов, используемых населением, соответственно, в неживой и живой природе;

 η_r – обобщенный коэффициент полезного действия населения, общества [44, 45].

$$\eta_r = \eta_{Tr} \cdot \varepsilon_r$$

 η_{Tr} – обобщенный коэффициент совершенства технологии;

 $0 \prec \eta_r \prec 1$, ε_r – обобщенный коэффициент качества трудовой деятельности;

 $0 \prec \varepsilon_r \leq 1$; d_r – коэффициент «отмирания», (потери запаса работоспособности) имеющий размерность, обратную размерности времени, и характеризующий среднюю скорость убыли величины $\Pi(t)$;

T — период моделирования;

t — время;

 V_r — удельный вес потенциала населения, расходуемого на выполнение полезной внешней работы.

Потребление ресурсов в пределах локальной бассейновой геосистемы описывается следующими уравнениями [45, 46]:

$$\frac{dN_{_{\mathcal{K}}}(t)}{dt} = P_{\mathrm{O}\Pi_{_{\mathcal{K}}}}(t) \cdot \xi_{1r}(t) - N_{_{\mathcal{K}}}(t) \cdot P_{1}; \quad N_{_{\mathcal{K}}}(0)$$
(2.9)

$$\frac{dN_{_{\rm H}}(t)}{dt} = P_{\rm O\Pi_{_{\rm H}}}(t) \cdot \xi_{2r}(t) - N_{_{\rm H}}(t) \cdot P_{2}; \quad N_{_{\rm H}}(0)$$
(2.10)

где $P_{O\Pi m}$ и $P_{O\Pi h}$ – полезные мощности населения, расходуемые, соответственно, на использование ресурсов из живой и неживой природы;

 ξ_{1r} и ξ_{2r} – обобщенные коэффициенты ресурсоотдачи, соответственно, в живой и неживой природе;

 P_1 и P_2 – обобщенные коэффициенты потерь ресурсов, соответственно, живой и неживой природы при добыче, транспортировке и т.д.

Структурная схема модели локальной системы в пространственных пределах бассейновой геосистемы «Природная среда – Хозяйственная деятельность – Население» включает в себя три блока: – «Природная среда»; «Хозяйственная деятельность» и «Население».

Блок «Природная среда» рассматривается в границах пространственных пределов бассейновой геосистемы, включающих в себя — атмосферу (приземные слои воздушной массы высотой до 10 км); гидросферу в виде речной гидрографической сети, в пределах которой формируется поверхностный сток; литосферу в пределах которой формируется подземный сток (глубиной до 300 м).

На основе результатов методологии оценки воздействия водохозяйственных объектов на природные среды и процессов взаимодействия компонентов живой и неживой природы в пределах зон влияния действующих оросительных систем важным условием является обеспечение экологической безопасности (ЭБ).

2.3 Оценка видов воздействия на природные среды в зонах влияния водохозяйственных объектов

2.3.1 Обоснование зон влияния комплекса гидротехнических сооружений МГЭС на участках бассейновых геосистем

Намечаемая хозяйственная деятельность по повторному использованию водных ресурсов для выработки электрической энергии на МГЭС не предусматривает изъятие водных

ресурсов из водных объектов (естественных и искусственных), что не нарушает сформировавшихся естественных и эксплуатационных гидрологических и гидравлических режимов. Такой способ использования водных ресурсов для выработки электрической энергии в наибольшей степени минимизирует возможные негативные экологические последствия в воздушной среде (приземные слои атмосферы), в гидросфере в пределах рассматриваемых участков бассейновых геосистем рек Егорлык, Кума, в верхних слоях литосферы (геологическая среда) в местах размещения комплекса гидротехнических сооружений (КГТС) МГЭС.

В результате анализа процессов взаимодействия (воздушной, гидросферой и литосферой) было установлено три основных зон влияния.

В пространственных пределах участков бассейновых геосистем муниципальных районов (Изобильненский, Буденовский и Нефтекумский) таблица 2.1) протекают все процессы жизнедеятельности живой и неживой природы, в том числе и хозяйственная деятельность связанная с использованием водных ресурсов как для выработки электрической энергии на МГЭС, так и в других отраслях.

Активными зонами влияния КГТС МГЭС являются зоны I и зона II. К мало активной зоне влияния III, которая определяется пространственными пределами муниципальных районов (таблица 2.1).

Таблица 2.1 – Пространственные пределы участков бассейновых геосистем муниципальных районов

№ п/п	Наименование района	Площадь территории (км²)	Объем приземных слоев атмосферы (км ³)	Объем верхних слоев литосферы (км ³)	Суммарный объем пространственных пределов (км ³)
1	Изобильненский муниципальный район	<i>F_{y,6,2}</i> . 1935	W _{am} 19350	<i>W</i> _{лт} 580,5	<i>W_{y.б.г.}</i> 19930,5
2	Буденовский муниципальный район	F _{y.ő.z.} 3060	W _{am} 30600	<i>W</i> _{лт} 918	W _{y.ő.e.} 31518
3	Нефтекумский муниципальный район	F _{y.ő.e.} 3797	<i>W_{am}</i> 37970	W _{лт} 1139,1	<i>W_{y.б.г.}</i> 39109,1

Исходя из системного подхода оценки влияния намечаемой хозяйственной деятельности рассматриваются как активные зоны влияния (I и II) КГТС МГЭС на окружающие природные среды, так мало активная зона влияния (III), определяемая пространственными пределами муниципального района.

Следует отметить, что мало активная зона влияния (III) устанавливается при системном рассмотрении с низших иерархических уровней – локальных ПТС «П.С.-В.О.-Н». ПТС «П.С.-В.О.-Н» находится на более низком иерархическом уровне по отношению к участку бассейновой геосистемы муниципального района и соответственно не может активно влиять на протекающие процессы в выше расположенной системе и на оборот, выше расположенная система муниципального района может оказывать активное влияние на ниже расположенную иерархическому уровню ПТС «П.С.-В.О.-Н».

Такое системное взаимодействие обуславливает тенденцию экологического состояния окружающей природной среды в зонах влияния МГЭС. Если в процессах взаимодействия природных сред с водохозяйственным объектом деятельности доминируют естественные процессы, то тенденция экологического состояния имеет положительное направление и соответствует нормативным требованиям. И наоборот, если доминируют не естественные процессы, то тенденция экологического состояния будет иметь отрицательное направление, связанное с деградацией окружающей природной среды. Направление тенденции экологического состояния природной среды. Направление тенденции экологического состояния природных сред определялось количественно и качественно.

Количественные показатели оценки воздействия КГТС МГЭС на природные среды определялись на основе энерго-энтропийного подхода. Результаты количественной оценки воздействия КГТС МГЭС на природные среды приведены в таблице 2.2. При определении количественных соотношений использовались данные таблицы 2.1.

Таблица 2.2 – Количественные показатели оценки воздействия КГТС МГЭС на ПС

No	Соответствие количественных показателей объекта деятельности и пространственных						
Π/Π	пределов участков бассейновых геосистем						
	$F_{I}/F_{y.\delta.z}$	$W_{am.o6}/W_{am}$	$W_{{\scriptscriptstyle {\it N}}m.o6}/W_{{\scriptscriptstyle {\it N}}m}$	$W_{oar{o}}/W_{y.ar{o}.z.}$			
	Изобильненский муниципальный район						
	р. Егорлык перепад № 2						
	0,0036 %	0,0036 %	0,0036 %	0,0036 %			
1	р. Егорлык перепад № 3						
	0,0036 %	0,0036 %	0,0036 %	0,0036 %			
	Суммарное соотношение						
	0,0072 %	0,0072 %	0,0072 %	0,0072 %			
	Буденовский муниципальный район						
	Р. Кума Покойненский перепад						
	0,002 %	0,002 %	0,002 %	0,002 %			
2	Покойненская плотина						
	0,001 %	0,001 %	0,001 %	0,001 %			
	Суммарное соотношение						
	0,003 %	0,003 %	0,003 %	0,003 %			
3	Нефт	гекумский муници	пальный район				
	0,0043 %	0,0043 %	0,0043 %	0,0043 %			

Важным количественным показателем оценки воздействия объектов хозяйственной деятельности на природные среды является балансовые соотношения свободной энергии (E_{cs}) поступающей из вне в рассматриваемую систему и свободной энергии вырабатываемой внутри системы ($E_{cs6.oo}$).

В пространственные пределы рассматриваемых участков бассейновых геосистем (Изобильненский, Буденовский, Нефтекумский муниципальные районы) доминирующим потоком свободной энергии является солнечная энергия поступающая из Космоса. По данным наблюдениям гидрометеостанции Ставропольского края был принят средний показатель уровня солнечной радиации, который составляет 110 Ккал/см² в год.

Исходя из принятого показателя уровня солнечной радиации (солнечной энергии) были определены энергетические показатели по муниципальным районам, как участков бассейновых геосистем.

Изобильненский муниципальный район

На один κm^2 поступает солнечной энергии $11\cdot 10^{11}$ Ккал в год, что эквивалентно $12,87\cdot 10^8$ кВт часа в год или количеству условного топлива $1,57\cdot 10^5$ тон. Суммарное количество энергии поступающей из космоса в пространственные пределы рассматриваемого участка бассейновой геосистемы р. Егорлык составляет:

 $E_{ceo.(u,p)} = 24903 \cdot 10^8$ кВт часа за год или $3038 \cdot 10^5$ тон условного топлива.

Буденовский муниципальный район

 $E_{cear{o}.(E,p)}$ =33660·10¹¹ Ккал или 39382·10⁸ кВт часа, или 4804·10⁵ тон условного топлива

Нефтекумский муниципальный район

 $E_{cear{o}.(H,p)} = 41767 \cdot 10^{11}$ Ккал или $48867 \cdot 10^8$ кВт часа или $5961 \cdot 10^5$ тон условного топлива.

Обобщенная (суммарная) хозяйственная деятельность на участках бассейновых геосистем — Изобильненском, Буденовском и Нефтекумском муниципальных районов, определяется незначительными энергетическими затратами на производство промышленной, сельскохозяйственной и другой овеществленной продукции в пределах менее тысячных долей процента от суммарной свободной энергии (E_{cso}) поступающей из Космоса.

Исходя из системного понимания функционирования природных и природнотехнических систем их состояния в том числе и экологическое определяется балансовым соотношением свободной энергии (E_{cb6} .) и связанной энергии (E_{cb3} .) неспособной производить какую-нибудь работу.

При доминировании свободной энергии (E_{cs6} .) поступающей в систему из вне, что наблюдается на рассматриваемых участках бассейновых геосистем, вектор развития всех процессов в системе будет направлен на эволюционное развитие (положительное), и наоборот.

Вырабатываемая электрическая энергия на МГЭС является источником свободной энергии, которая будет использоваться внутри системы в жизненно необходимых процессах хозяйственной деятельности.

Воздействие МГЭС на природные среды участков бассейновых геосистем с энергетической точки зрения составит менее тысячных долей процента в пределах участков бассейновых геосистем.

2.3.2 Виды воздействия на окружающую среду в период строительства ГЭС

В качестве источников воздействия объектов на окружающую среду рассматриваются:

- новые сооружения, размещаемые на площадке строительных работ;
- элементы технологий, функционирование которых является причиной изменений окружающей среды;
- объекты, жизненный цикл которых связан со строительством или эксплуатацией будущего объекта.

Виды воздействия на окружающую среду определяются, исходя из двух классификационных признаков: привнос в окружающую среду и изъятие из окружающей среды. Параметры воздействия определяются на основе следующих показателей:

- характер воздействия (прямое, косвенное, кумулятивное, синергическое, в том числе с
 учетом проявления через определенный промежуток времени);
 - интенсивность воздействия (величина в единицу времени);
 - уровень воздействия (величина на единицу площади или объема);
 - продолжительность воздействия;
 - временная динамика воздействия;
 - пространственный охват воздействия (площадь распространения);

На всех этапах строительства МГЭС будет происходить различного рода воздействие на окружающую среду за счет выбросов загрязняющих веществ в атмосферу, поступления загрязненных вод в природные поверхностные и подземные воды, образования и размещения отходов производства и потребления, других видов воздействия.

Воздействие на окружающую среду в период строительства будет характеризоваться: Привносом:

- 1) химических элементов и их соединений с концентрацией, нехарактерной для природных сред (выбросы в атмосферу от автотехники, сварочных работа, проливы масла и горючего при работе машин и механизмов);
 - 2) строительных отходов;
 - 3) бытовых отходов от бригады строителей;
 - 4) загрязненных речных вод;
- 5) оптического загрязнения, изменяющего характерный облик ландшафта (если участок работ не рекультивирован).

Изъятием:

- 1) земельных ресурсов;
- 2) материнских (почвообразующих) пород при строительстве подводящих и отводящих каналов.

Изъятие земельных ресурсов

Под строительные площадки КГТС, будут изыматься земли сельскохозяйственного назначения — в бессрочную аренду. Подъездные дороги, необходимые для проведения строительных работ, будут размещаться на землях, отведенных во временное пользование.

Почвы и грунты, изъятые из траншей в наземных ландшафтах, будут использоваться на месте. Техническая и биологическая рекультивация вернут земли в состояние, пригодное для засева трав.

Воздействие на воздушный бассейн

При строительстве МГЭС возможно воздействие на приземные слои атмосферы (испарение с водной поверхности водохранилищ, изменение микроклимата в радиусе до 0,2 км от русла реки), на верхние слои литосферы в зоне фильтрации речных вод из открытых участков подводящих и отводящих каналов.

Строительные работы могут оказать незначительное негативное воздействие на качество поверхностных вод и атмосферного воздуха при эксплуатации автотранспорта, машин и механизмов (выбросы в атмосферу, утечка нефтепродуктов и пр.). Поэтому нами были выполнены расчеты количества и состава выбросов работающей техники при проведении строительных работ (таблица 2.3, Приложение E).

Для определения уровня загрязнения в приземном слое атмосферного воздуха на строительной площадке выполнялись расчеты выбросов работающей автотехники и всех сварочных постов.

Данные, характеризующие параметры и мощность выбросов от источников, приведены в таблице 2.3 (Приложение E).

Для прогнозирования степени воздействия выбросов загрязняющих веществ на состояние атмосферного воздуха необходимо проводится расчет рассеивания вредных веществ в атмосферном воздухе. Расчет рассеивания загрязняющих веществ в атмосфере проведен для нормального режима работы. Нормальный режим работы рассчитан с учетом максимально работающего оборудования.

Уровень загрязнения атмосферного воздуха определяется величиной приземной концентрации загрязняющих веществ, выбрасываемых источниками выбросов строительной площадки с учетом фонового загрязнения по этим веществам. Для определения концентрации вредных веществ в приземном слое атмосферы выполнен расчет рассеивания вредных веществ в атмосфере по программе «Эколог» версия 3.0, разработанной НПО «Интеграл» г. Санкт-Петербург и согласованной в ГГО им. А.И. Воейкова. Разработка и формирование таблиц проекта нормативов предельно-допустимых выбросов (ПДВ) предприятия выполнена по программе «ПДВ – Эколог» версия 2.55.

Расчет по программе УПРЗА «Эколог – 3.0» и «ПДВ – Эколог» проводится при наличии следующих исходных данных:

- технических параметров источников выбросов: высоты, диаметра устья источника, скорости, объема, температуры выходящей газовоздушной смеси;
 - данных количественного и качественного состава выбросов;
- характеристик рассеивания примесей от отдельных источников: максимальной концентрации, создаваемой описываемым источником C_{max} , расстояния от источника — X_m и скорости ветра U_{θ} , при которой она достигается;
 - характеристики положения строительной площадки (влияния рельефа местности);
 - фоновых концентраций примесей;
- климатических характеристик района работ и коэффициентов, определяющих условия рассеивания загрязняющих веществ в атмосфере.

Данные параметров источников выбросов, количественного и качественного состава выбросов определены расчетно-теоретическим методом в соответствии с требованиями действующих нормативных документов.

Расчет рассеивания загрязняющих веществ произведен в основной системе координат. Ось ОУ основной системы координат совпадает с направлением на север на ситуационной карте-схеме района расположения строительной площадки, угол между ОХ основной системы координат и направлением на Север составляет 90^{0} .

Расчет рассеивания выполнен для 32 загрязняющих веществ и для 2 групп веществ, обладающих эффектом суммарного действия: группа суммации 6009 (NO₂ + SO₂) и группа суммации 6043 (SO₂ +H₂S).

Результаты расчета рассеивания использовались для определения уровня загрязнения атмосферного воздуха на границе санитарно-защитной зоны и на различном расстоянии от буровой площадки.

Качество воздуха по степени его загрязненности вредной примесью считается удовлетворительным согласно ОНД-86, если выполняется следующее условие:

$$C_{p}/\Pi \square K = K \le 1 \tag{2.11}$$

$$C_p = C_{\phi} + C_m \tag{2.12}$$

где C_p – расчетная концентрация вредной примеси над заданной точкой поверхности, мг/м³;

 C_{ϕ} , C_{m} — фоновая концентрация вредной примеси и вклад вредной примеси, создаваемый источниками выбросов буровой площадки в расчетную концентрацию, над заданной точкой поверхности, доли ПДК;

 Π ДК – предельно допустимая концентрация вредного вещества (максимально разовая, среднесуточная или ОБУВ), мг/м 3 .

Расчеты показывают, что уровень загрязнения атмосферы на границе санитарнозащитной зоны (100 м) не превышает ПДК по всем загрязняющим веществам, кроме пыли.

Воздействия могут быть уменьшены путем подбора соответствующего топлива и правильной эксплуатации машин и механизмов, исключения случаев разливов масел и горючего, усиления контроля за сбором и утилизацией промышленных и бытовых отходов.

Пылевая нагрузка может быть уменьшена при регулярном орошении подъездных дорог и территории стройплощадки.

Воздействие на поверхностные и подземные воды

Основными факторами, воздействующими на водные объекты при гидротехническом строительстве, является водный режим, гидравлические и морфометрические характеристики. Эти характеристики действуют на абиотические и биотические компоненты водных объектов, вызывая гидрологические, гидрохимические, гидробиологические и гидрогеологические изменения.

Создание КГТС МГЭС обуславливает собой вторичное использование водных ресурсов.

Саморегуляция наземных и водных экосистем в долинах рек Егорлык, Кумы и Верней Кубани преимущественно определяется речными системами с источниками питания за счет таянья ледников в горах и дождевых осадков. Общая сумма осадков в вегетационный период составляет 433 мм из 596 мм среднегодовой суммы, что практически полностью обеспечивает потребность растений во влаге. В этот период реки имеют наибольший сток за счет таяния ледников в горах, создавая определенный резерв водных ресурсов, который может быть использован в народном хозяйстве.

Вопросы качества воды во многом определяются современной антропогенной нагрузкой и степенью очистки сточных вод.

Уровни изменения климатических условий в долинах рек Егорлык, Кума будут незначительными и могут проявляться лишь на участках создания МГЭС.

Обоснованность и приемлемость рассматриваемых в проекте вариантов в основном проводится по материалам водохозяйственных балансов, гидрологических данных, гидрогеологических и климатических исследований современного состояния почвеннорастительного покрова и живого мира, качества воды, рыбопродуктивности, гидробиологического режима, переработки берегов и русловых процессов.

Учитывая развитие новых форм хозяйствования, использование водных ресурсов для МГЭС в работе рассматривается как поставка сырьевых ресурсов в другой регион на взаимовыгодных условиях. При этом рассматривается повышение жизненного уровня населения на участках бассейновых геосистем путем создания зон озеленения и рекреации.

Воздействие на почвенный покров и подстилающие породы

Строительство МГЭС несомненно повлияет на целостность почвенного покрова. Однако во время строительства будут нарушены узкие локальные участки вдоль прокладки подводящих и отводящих каналов при строительстве. В связи с эти следует провести следующие природоохранные меры:

При строительстве ливнеотводов возможно образование промоин, что может привести к оврагообразованию. Следует тщательно отслеживать параметры промоин. При проявлении прогрессирующей динамики необходимо принять необходимые меры — закрепление склонов с помощью посадки растений, закреплению ливнеотводов каменной наброской.

Во время строительства верхний гумусовый склон может быть погребен ниже лежащими малоплодородными горизонтами почвы. Поэтому перед строительством необходимо снять самый плодородный верхний слой, чтобы использовать его для последующей рекультивации.

После окончания строительства рекомендуется произвести террасирование склонов с завозом почвы, произвести залужение и предусмотреть строительство нагорных каналов для отвода ливневых вод.

Воздействие на наземные и водные биоценозы

Календарный план мероприятий по строительству МГЭС на намечаемых площадках формироваться в соответствии жизненным циклом форели, ихтеофауны рек Егорлык и Кума. Перекрытие её миграционных путей к местам нереста и ската её молоди в низовья рек на нагул без специальных рыбохозяйственных мероприятий может привести к снижению популяции рыб.

В связи с этим в составе водозаборного гидроузла должны быть предусмотрены рыбопропускное сооружения. Рыбопропускное сооружение рассматривалось в виде рыбоходного канала с постоянным уклоном дна или лестничного рыбохода. Качественно оба варианта равноценны. При их проектировании должны учитываться скорости: пороговая – 0.15 – 0.20 м/с; привлекающая – 0.5 – 0.8 м/с; сносящая – 0.9 – 1.20 м/с.

Исследования фитопланктона рек, как основы питания макробионтов показали, что по сравнению с предыдущими исследованиями, проводимыми на реках, несмотря на сохранение основного комплекса видов, доминантами в изученных водоемах зачастую оказывались водоросли, не отмеченные в качестве доминант ранее (*Epithemiaturgida, Nitzschiaacicularis*), что является характерной чертой лабильного фитопланктонного сообщества. Поэтому воздействие на фитопланктон при строительстве МГЭС должно быть минимальным.

В целом на изучаемых районах сообщество пелагиали находилось в начале периода интенсивного летнего развития. Большое количество органического вещества, переносимого водами изученных рек, не в полной мере используется пелагическими организмами, и только в водохранилищах создаются условия для её эффективной утилизации. Снижение интенсивности гидродинамического фактора положительно сказывается на уровне развития пелагических организмов.

Строительство МГЭС нарушает растительный покров, что приводит к появлению участков осыпей, пустошей, зарастающей адвентивной растительностью, мало пригодной для пастбищ и сенокосов. Поэтому на нарушенных участках ландшафта необходимо запланировать рекультивационные работы по восстановлению растительного покрова и предотвращению эрозионных процессов, вызванных строительными работами. До того времени, пока не будет восстановлен растительный покров на нарушенных участках, следует оградить их от выпаса скота.

На формирование растительных сообществ ниже на площадках строительства МГЭС не окажет сколько-нибудь значительного влияния.

Прогнозируемые изменения в естественных процессах руслоформирования р. Егорлык и Кума не вызовут необратимых негативных последствий, связанных с биоразнообразием водных биоценозов в целом, и ихтиофауны в частности в водной среде и прирусловой части. Но, кроме непосредственного воздействия на растительный и животный мир территорий, на которых будет проходить строительство МГЭС, необходимо обратить внимание на косвенное воздействие строительства на растительность и животный мир прилегающих территорий.

Наибольшее беспокойство животным и птицам нанесет работающая техника во время строительных работ. Работы в русле следует проводить после окончания нереста рыбы. По данным Ставропольского государственного педагогического университета, выполнявшего

работу по оценке влияния водохранилищ на животный и растительный мир, строительство МГЭС не принесет ощутимого ущерба фауне и флоре, поскольку территория уже в значительной степени изменена под давлением антропогенного воздействия, и биота приспособилась к новым условиям существования.

Воздействие на социальные условия и здоровье населения на участках бассейновых геосистем

Все строительные работы будут сопровождаться образованием бытовых отходов от строительных бригад. Кроме того, будут образовываться в относительно небольшом количестве отходы от эксплуатации и ремонта техники и механизмов, твердые бытовые отходы от жизнедеятельности строителей и ремонтников, которые окажут незначительное воздействие на окружающую среду. При этом должны соблюдаться условия существующих в РФ и на территории Ставропольского края требований по сбору, временному хранению и конечному размещению отходов, а также возможности повторного использования или утилизации отходов.

Большая часть потенциальных негативных воздействий в результате строительства может быть минимизирована посредством соблюдения правил трудовой и строительной безопасности, охраны труда, выполнения требований по сбору, временному хранению и своевременной передаче образующихся опасных отходов.

Все строительные работы окажут небольшое положительное воздействие на население, занятость и доход, стимулируя занятость. Строительство гидросооружений даст новые рабочие места, увеличится поток налоговых отчислений в федеральный, краевой и местные бюджеты, следовательно, это строительство будет способствовать уменьшению социальной напряженности в регионе.

2.4 Методологические основы обеспечения экологической безопасности водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н»

Основным понятием в научном направлении, связанном с обеспечением экологической безопасности и, соответственно, обобщенной безопасности жизнедеятельности является экологическая опасность.

Человек и окружающая среда, как объекты защиты, всегда должны находиться в безопасном состоянии, которое может быть при полном отсутствии воздействия негативных факторов или при допустимых уровнях их воздействия в пределах нормативных ПДК, ПДУ, ПДВ, ПДС, ПДО. В ФЗ «Об охране окружающей среды» от 10 января 2002 г. № 7-ФЗ в статье 1

«экологическая безопасность» определена как состояние защищенности природной среды и жизненно важных интересов человека от возможного негативного воздействия хозяйственной и иной деятельности, чрезвычайных ситуаций природного и техногенного характера, их последствий. Процесс обеспечения экологической безопасности необходимо рассматривать как:

- цель сохранения безопасной окружающей среды и биологического разнообразия природных ресурсов;
 - основы нормирования в области охраны окружающей среды;
- общие и специальные требования ко всем этапам существования техногенного объекта: при размещении, проектировании, строительстве, реконструкции, вводе в эксплуатацию, эксплуатации, консервации и ликвидации зданий, строений, гидротехнических сооружений, строительных комплексов, мелиорируемых и рекреационных территорий, транспортных магистралей, городских и сельских поселений с требованиями в области охраны окружающей среды, восстановления природной среды рациональным использованием и воспроизводством природных ресурсов.

Применительно для вида деятельности, связанной с применением водных ресурсов в пространственных пределах бассейновых геосистем, где функционируют оросительные системы, ЭБ — это такое состояние объекта защиты, при котором воздействие на него потоков вещества, энергии и информации в процессах взаимодействия техногенного компонента (комплекс строительных и водохозяйственных сооружений, рекреационных территорий, систем водоснабжения и водоотведения) с окружающей природной средой, человеком (обществом) находится в пределах максимально допустимых значений ПДК, ПДУ, ПДВ, ПДС, ПДО.

ЭБ, как определяющий основной термин, приобретает реальное практическое значение в системе: «О.З.–И.Э.О.–З.М.», где в качестве объекта защиты может являться окружающий материальный мир и, в первую очередь, человек, общество, природная среда, объекты хозяйственной деятельности. Ели отсутствует объект защиты или источник экологической опасности, то система перестает существовать и, соответственно, нет необходимости проводить мероприятия по защите от негативных воздействий потоков вещества, энергии и информации. Следует отметить, что термин «безопасность» включает в себя многозначное толкование – безопасность труда, экономическая безопасность, безопасность национальная и т. д. Но если рассматривать ЭБ в зоне влияния водохозяйственного объекта, то необходимо иметь в виду систему, включающую в себя в качестве объектов защиты население, проживающее в зоне влияния водохозяйственного объекта, и окружающую природную среду – геологическую среду в основании чаши и сооружений напорного фронта, атмосферу, гидросферу и литосферу в пространственных пределах бассейновой геосистемы, через которую протекают процессы теплообмена, влагообмена и поступления солнечной энергии на водосборную территорию и

приземные слои атмосферы. Источником экологической опасности в данной системе будет объект деятельности по природообустройству и водопользованию. В состав защитных мероприятий могут входить различные виды и типы конструктивных, природоохранных и организационных мероприятий, способствующих снижению уровней ПДК, ПДУ_Э ПДВ, ПДС, ПДО, негативного воздействия на окружающую среду, в том числе и на проживающее население.

Обеспечение экологической безопасности в России осуществляется на основе государственной политики в этой области (таблица 2.4).

Таблица 2.4 – Принципы государственной политики в области обеспечения экологической безопасности

Реализуемые внутри государства	Реализуемые на уровне		
	межгосударственных отношений		
Обеспеченность безопасности для жизни и здоровья	Не нанесение ущерба		
личности и общества в целом	окружающей среде за пределами		
Возможность осуществления производственной и	границ государства и		
другой деятельности, способной создать угрозу	неизбежность ответственности за		
экологической безопасности населения и территорий	экологические последствия		
Проведение санитарно-эпидемиологической и	трансграничных воздействий		
обязательной государственной экспертизы проектов			
строительства, реконструкции экологически опасных			
объектов, а также производства любой продукции			
Организация системы государственного экологического	Масштабное участие в		
мониторинга окружающей природной среды	международной деятельности в		
Прозрачность планов осуществления деятельности,	области экологической		
связанной с угрозой возникновения экологической	безопасности		
опасности, а также обеспечения полной достоверной и			
своевременной информацией об этой опасности			
населения, общественных организаций и			
государственных органов			

Система «О.З.–И.Э.О.–З.М.» в общем виде может включать в себя все объекты защиты, все источники экологической опасности и весь набор защитных мероприятий, но для изучения процессов взаимодействия всех компонентов данной системы при непрерывном обмене потоками вещества, энергии и информации в пространстве и времени вызывает значительные сложности. Поэтому при исследовании целесообразнее рассматривать систему «объект защиты – источник экологической опасности – защитные мероприятия» с выделением из общего числа конкретного объекта защиты, на который воздействует конкретный источник экологической опасности в сочетании с защитными мероприятиями. Модель системы с выбранными объектами защиты (ОЗ), источником экологической опасности (ИЭО) и защитными мероприятиями (ЗМ) в общем виде может быть представлена схематично (рисунок 2.3).

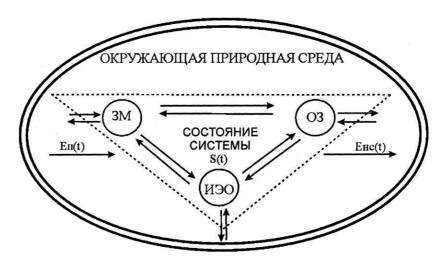


Рисунок 2.3 – Модель взаимодействия элементов системы – «ОЗ – ИЭО – ЗМ»

Модель системы включает в себя выбранный источник экологической опасности, например, водохранилищный гидроузел (объект защиты – прилегающая территория в зоне действия водоподпорного гидроузла); дренажные системы на прилегающих территориях в верхнем и нижнем бъефах.

В модели системы используются векторные обозначения: $E_n(t)$ — входные вещественноэнергетические воздействия на систему; S(t) — состояние системы, определяемое процессами взаимодействия между собой элементов «О.З.–И.Э.О.–З.М.» и окружающей природной среды — $E_n(t)$; выходные воздействия системы на окружающую природную среду $E_{\text{н.с.}}(t)$. Векторные характеристики определяются структурой системы.

Основываясь на указанную модель системы (рисунок 2.3), можно привести дополнительный вариант определения экологической безопасности, который дополняет выше приведенное определение. ЭБ — это есть свойство системы существовать и развиваться при отсутствии опасного для человека, общества и окружающей природной среды взаимодействия, а также способность всей системы ослаблять взаимодействия человека, общества и окружающей природной среды с водохозяйственным объектом данной системы до безопасных уровней ПДК, ПДУ, ПДВ [121].

При обосновании основополагающих категорий экологической безопасности, когда в качестве источников экологической опасности принимаются водохозяйственные и строительные комплексы, здания и сооружения, урбанизированные, мелиорируемые и рекреационные территории, транспортные магистрали и др., рекомендуется исходить из интерпретации экологической опасности, как возможности причинения ущерба человеку, обществу и окружающей природной среде воздействием того или иного техногенного объекта, действующего в системе «О.З.–И.Э.О.–З.М.». Понятие экологической опасности является одним из фундаментальных и сложных, так как связано с рядом дополнительных понятий:

риск — количественная мера экологической опасности, характеризующая как возможность возникновения ущерба, так и его вероятные размеры;

ущерб – мера или результат такого изменения состояния системы «О.З.–И.Э.О.–З.М.», которое характеризуется утратой здоровья населения, саморегулирующей способности окружающей природной среды в зоне действия объектов природообустройства и водопользования;

происшествие — событие, произошедшее в результате воздействия источника экологической опасности на человека, общество и окружающую природную среду, повлекшее за собой определенный ущерб;

авария или аварийная ситуация — происшествие на водохозяйственном объекте с соответствующим ущербом для людей и окружающей природной среды;

катастрофа — происшествие, характеризуемое полным или частичным разрушением водохозяйственного объекта, которое сопровождается гибелью людей и другими крупными ущербами для общества и окружающей природной среды;

строительный объект по использованию водных ресурсов на Малой ГЭС в составе ПТС «П.С.-О.Д.-Н»;

Экологическое состояние в зоне действия «ВО» рассматриваемой ПТС «П.С.–В.О.–Н» формирует экологическую безопасность системы «О.З.–И.Э.О.–З.М.».

С учетом отмеченных выше основных определений, для обеспечения «ЭБ» в зоне влияния «ВО», необходимо обеспечивать техническую безопасность и надежность работы этого объекта в системе «О.З.–И.Э.О.–З.М.», в которой «Водохозяйственный Объект», как источник экологической опасности, функционирует в задаваемых проектных условиях с высокой вероятностью исключения происшествий, обусловленных воздействием данного объекта на компоненты природной среды и человека в допустимых нормативных пределах.

Системы «О.3.–И.Э.О.–З.М.», как правило, функционируют в пространственных пределах бассейновых геосистем водных объектов.

В ПТС «П.С.–В.О.–Н», включающей в себя абиотические, биотические компоненты окружающей природной среды, объект деятельности, как источник экологической опасности, является главным и определяет своим функционированием экологическое состояние данной ПТС «П.С.–В.О.–Н» в пространственных пределах бассейновой геосистемы.

В создании новых «ВО», используемых в для выработки электрической энергии на ГЭС, важным понятием является уровень экологической приемлемости и совершенства конструктивных решений. Экологическая приемлемость технологии или конструкции, в обобщенном понятии, определяется ресурсоемкостью на стадии строительства той или иной строительной конструкции здания или сооружения и определяется, в конечном итоге,

ресурсными затратами, в том числе возобновляемых и не возобновляемых природных энергетических ресурсов, что обусловливает большее использование местных строительных материалов. Исходя из отмеченного, можно сформулировать важное понятие: экологическая приемлемость технологии, конструктивного решения в строительстве водохозяйственных объектов определяется показателями ресурсоемкости возобновляемых и не возобновляемых природных источников энергии и вещества.

В развитии понятия экологическая безопасность экологическая приемлемость (ЭП) водохозяйственных объектов в составе ПТС «П.С. – В.О.– Н» нами рекомендуется характеризовать следующими концептуальными утверждениями [4, 11, 12]:

- 1. ЭП «В.О.» находится в зависимости от конструктивного совершенства используемых типов ГТС, сопутствующих устройств в виде рыбозащитных, рыбопропускных и т.п., а также функциональных и вспомогательных зданий;
- 2. ЭП характеризуется процессами взаимосвязи ВВВ «В.О.» с «П.С.», формирующие собой ЭС под воздействием вносимых изменений в движении потоков ВЭИ;
- 3. ЭП находится в зависимости от ресурсоемкости, энергоэффективности в технологических процессах строительства и эксплуатации «В.О.»;
- 4. Ведущим показателем в причинно-следственной логике BBB «В.О.» с «П.С» в пространственных пределах зон влияния при оценке ЭП «В.О.» является ЭС;
- 5. ЭП сопутствует процессам самоорганизации, как универсальной модели взаимосвязанных преобразований в «П.С.» под воздействием «В.О.» в составе ПТС «П.С. В.О. Н»;
- 6. ЭП «В.О.» способствует доминированию естественных процессов преобразований в «П.С.» и снижению темпов роста уровня энтропии;
- 7. ЭП «В.О.» в составе ПТС «П.С. В.О. Н» способствует приспособлению и адаптации конструктивных элементов «В.О.» к окружающей внешней среде путем структурных преобразований в «П.С.»;
- 8. ЭП взаимосвязана с процессами самоорганизации по совершенствованию конструктивных элементов «В.О.» в составе ПТС «П.С.– В.О.– Н»;
- 9. ЭП «В.О.» в составе ПТС «П.С. В.О.– Н» характеризуется конструктивными и функциональными количественными и качественными показателями;
- 10. Оценка уровня ЭП «В.О.» в составе ПТС «П.С. В.О. Н» определяется путем СКЭМ.

В рассматриваемых ПТС «П.С. – В.О. – Н» «В.О.» принимается главным техногенным компонентом, замыкающим на себе определенные пространственные пределы оросительной сети, в причинно-следственной взаимосвязи с ЭП формирующее экологическое состояние,

которое выражается показателем экологической безопасности, как важного фактора в процессах жизнедеятельности «Н», растительного и животного мира.

Исходя из понятий «Экологическая безопасность» и «Экологическая приемлемость», критерии экологической безопасности (КЭБ) для рассматриваемых ПТС «П.С. – В.О.– Н» количественно и качественно определяются показателями экологического состояния в пространстве и времени природных сред в зонах влияния «Объекта деятельности».

Экологическое состояние в пространстве и времени в зонах влияния «Водохозяйственного объекта» определяется процессами взаимодействия природных и техногенных компонентов между собой, что обусловливает непрерывное движение потоков вещества, энергии и информации, которые количественно и качественно регламентируются ПДК, ПДУ, ПДВ, ПДС и ПДО.

На основе сформулированных понятий «Экологическая приемлемость», «Экологическая безопасность» и «Экологическое состояние» в пространстве и времени в зонах влияния «Водохозяйственного объекта» нами сформулировано понятие «Критерии экологической безопасности» для рассматриваемых ПТС «П.С. – В.О. – Н».

Так, к примеру, критерии экологической безопасности (КЭБ) ПТС «П.С. – В.О. – Н», связанных с использованием водных ресурсов горных водотоков оросительных систем для выработки электрической энергии на малых ГЭС, определяют собой показатели (количественные и качественные) Π_i , Π_j экологической допустимости воздействия «Водохозяйственных объектов» на естественные процессы саморегуляции в природных средах, не вызывая при этом негативной тенденции деградации в зонах влияния.

Характер движения потоков вещества, энергии и информации в пространстве и времени в зонах влияния «Водохозяйственных объектов» определяется как внутрисистемными процессами взаимодействия природных и техногенных компонентов между собой, так и процессами вещественно-энергетического обмена с внешней средой в пределах бассейновой геосистемы, где функционирует оросительная система и систем более высокого иерархического уровня.

В общем случае, под экологической обстановкой принято понимать совокупность условий и факторов абиотической и биотической природы, формирующихся под воздействием «Водохозяйственного объекта» в зоне возможного его действия. Эти условия и факторы характеризуются количественными значениями определенных параметров, по значениям которых представляется возможность оценить влияние экологической обстановки на здоровье и жизнедеятельность людей, а также состояние в окружающей природной среде.

Экологическая безопасность в зоне влияния водохозяйственного объекта деятельности оценивается в зависимости от экологической обстановки, которая подразделяется на пять видов (таблица 2.5).

Таблица 2.5 – Классификация экологической обстановки по степени ее неблагополучия

1	Относительно	Индекс концентрации вредных веществ не превышает ПДК,
	удовлетворительная	ПДУ, ПДВ.
2	Напряженная	Индекс концентрации вредных веществ в пределах 10 индексов ПДК, ПДУ, ПДВ.
3	Критическая	Индекс концентрации вредных веществ составляет 20-30 индексов ПДК, ПДУ, ПДВ.
4	Кризисная—чрезвычайная экологическая ситуация	Индекс концентрации вредных веществ превышает индекс $\Pi Д K_{\Im} \Pi Д У$, $\Pi Д В$ в 50 раз и более. Устойчивые негативные изменения в окружающей природной среде, исчезновение отдельных видов растений, животных, угроза здоровью людей.
5	Катастрофическая (экологическое бедствие)	Необратимые изменения в окружающей природной среде. Нарушение природного равновесия, деградация флоры и фауны, потеря генофонда, существенное ухудшение здоровья людей.

К числу параметров в зоне влияния объекта деятельности можно отнести поля концентраций ингредиентов, загрязняющих окружающую природную среду, интенсивность температурного, влажностного, акустического, гравитационного факторов воздействия, интенсивность загазованности и запыленности, скорость естественного увеличения популяции, коэффициент рождаемости, прирост и смертность той или иной популяции.

Так, в соответствии с законом Российской Федерации «Об охране окружающей природной среды» к зонам чрезвычайной экологической ситуации следует относить участки территории земной поверхности и водных акваторий, где под воздействием «Водохозяйственного объекта» происходят устойчивые отрицательные изменения в окружающей природной среде, угрожающие здоровью населения и состоянию естественной природной среды.

Согласно ст. 58 и 59 действующего в России Закона «Об охране окружающей природной среды» неблагоприятное экологическое состояние территорий в зоне влияния объекта деятельности можно оценивать по признакам, приведенным в таблице 2.6 [45, 46].

Экологическое состояние ПТС «П.С.— В.О.— Н» (растительного и животного мира) характеризуется показателями загрязнения воздушной среды, гидросферы (водных объектов), почвенного покрова и, как следствие, деградации экосистем. Экологическая безопасность в зоне действия ПТС «П.С.— В.О.— Н» оценивается с общеэкологических позиций и санитарногигиенических нормативных требований. В большинстве случаев показатели разделены на

основные и дополнительные. Состояние территории в зоне влияния «Водохозяйственного объекта» оценивается по основным показателям с учетом дополнительных.

Таблица 2.6 – Признаки крайних степеней неблагополучного экологического состояния территорий в зоне влияния объекта деятельности [45, 46]

Поломочна	Степень неблагополучия				
Положения	Экологическое бедствие (ст.		Экологический кризис (ст. 58)		
Окружающая	Глубокие	необратимые	Устойчивые	отрицательны	
природная среда.	изменения.	Существенное	изменения.	Угроза	здоровью
Здоровье населения.	ухудшение	здоровья	населения.	,	Устойчивые
Естественные	населения.	Разрушение	отрицательные	изменения	состояния
экосистемы.	естественных экосистем.		естественных экосистем.		

При изучения ПТС «П.С.— В.О.— Н» в качестве центрального компонента рекомендуется принимать водохозяйственный объект с водным объектом (река, канал), замыкающий на себя определенную территорию земной поверхности, на которой формируется поверхностный и подземный стоки; находящийся в зависимости от рельефа, климата, гидрологических и гидрогеологических условий, почвенного покрова, разнообразия растительного и животного миров и разновидностей хозяйственной деятельности.

На основе результатов системного анализа водохозяйственных объектов на Северном Кавказе экологическая безопасность в зонах влияния может быть представлена в следующих концептуальных утверждениях.

- 1. «Экологическая безопасность» в зоне влияния «Водохозяйственного объекта» взаимосвязана с процессами жизнедеятельности населения и природной среды.
- 2. «Экологическая безопасность» в зонах жизнедеятельности непосредственно взаимосвязана с энергопотреблением, обусловливающим выработку, хранение, преобразование тепловой, механической, химической, электрической и др. видов энергии.
- 3. Опасность нарушения «экологической безопасности» начинает проявляться в результате неуправляемого выхода энергии или вещества, накопленных в водохозяйственных объектах, во внешнюю среду относительно объекта, к примеру, в случае разрушения плотины водохранилищного гидроузла.
- 4. Неуправляемый выход энергии или вещества, особенно токсичного, из водохозяйственного объекта во внешнюю среду приводит к радикальному отрицательному изменению процессов жизнедеятельности населения, природной среды в зоне действия данного объекта, что сопровождается ущербом населению, растительному и животному мирам, а также природной среде и материальным ценностям.
- 5. Нарушение «экологической безопасности» в зонах действия водохозяйственного объектов в пространственных пределах бассейновой геосистемы является следствием

появления причинной цепи предпосылок, обусловленных на стадиях проектирования, строительства и эксплуатации, в результате которых происходит высвобождение энергии и вещества из объекта деятельности.

- 6. Инициаторами и звеньями причинной цепи нарушения «экологической безопасности» в системе «О.З.–И.Э.О.–З.М.» является водохозяйственный объект, не отвечающий современным экологическим требованиям.
- 7. Аварийные ситуации на водохозяйственном объекте могут быть вызваны конструктивным несовершенством, ошибками на стадии проектирования, несоблюдением нормативных и проектных решений на стадии строительства, нарушением правил и инструкции по эксплуатации объекта, которые приводят к неуправляемому процессу высвобождения накопленных в объекте энергии или вещества.

Для обеспечения экологической безопасности водохозяйственных объектов связанных с использованием водных ресурсов для выработки электрической энергии на малых ГЭС важным технологическим этапом на стадии их проектирования является оценка экологической ситуации в пространственных пределах расположения оросительной системы.

2.5 Выводы по второй главе

На основе результатов исследований процессов взаимодействий водохозяйственных объектов оросительных систем Ставропольского края с природными средами в пространственных пределах локальных бассейновых геосистем с использованием системного энерго-энтропийного подхода разработаны основы методологии оценки воздействия на природные среды (атмосферу, гидросферу, верхние слои литосферы) намечаемых к строительству водохозяйственных объектов действующих в составе ПТС «П.С.-В.О.-Н».

На основе системного энерго-энтропийного подхода разработана обобщенная структура модели ПТС «П.С.-В.О.-Н», включающая в себя иерархию внутренних блоков, в которой техногенный объект действует в единстве с фундаментальными законами природы.

На основе результатов исследований видов воздействия в зонах влияния водохозяйственных объектов разработаны методологические основы по обеспечению экологической безопасности в системе «О.З.-И.Э.О.-З.М». В развитии понятия экологическая безопасность, на основе десяти концептуальных утверждений введено понятие экологическая приемлемость, формирующее собой экологическое состояние в зонах влияния «В.О.», которое выражается показателями экологической безопасности.

На основе результатов системного анализа процессов взаимодействия водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н» сформулированы основные концептуальные утверждения экологической безопасности в зонах их влияния.

ГЛАВА З ОЦЕНКА ЭКОЛОГИЧЕСКОЙ СИТУАЦИИ НА УЧАСТКАХ ПРОЕКТИРУЕМЫХ РАБОТ СТРОИТЕЛЬСТВА ВОДОХОЗЯЙСТВЕННЫХ ОБЪЕКТОВ

3.1 Методика проведения полевых, камеральных и лабораторных исследований

При проектировании строительных работ на возведение водохозяйственных объектов в виде малых ГЭС на действующих ГТС оросительных систем должны быть выявлены все возможные воздействия на окружающую среду, определены возможные негативные изменения экологического состояния соответственно социально-экономические другие последствия [7, 9, 11].

При эксплуатации водохозяйственных объектов в составе создаваемых ПТС «П.С.-В.О.- Н» необходимо руководствоваться принятыми принципом экологической политики в области охраны окружающей среды, рационального использования природных ресурсов, обеспечение экологической безопасности в периоды строительства и эксплуатации «В.О.».

Правовой основой в обеспечении ЭБ является федеральные законы РФ и нормативные решения субъектов РФ, основными из которых являются «Об охране окружающей природной среды», «О животном мире», «О недрах», «Об отходах производства и потребления», Земельного Водного и Лесного кодекса РФ, «Об экологической экспертизе».

В соответствии нормативно-правового законодательства, методология проведения экологических исследований на участке проектирования и строительства водохозяйственных объектов в составе ПТС «ПС-В.О.-Н» включает в себя:

- геохимическое картирование;
- химико-аналитическую базу, методы и средства измерения и камеральные работы.

Геохимическое картирование ореолов загрязнения окружающей среды

Для объективной оценки степени загрязнения природных сред необходимо иметь точку отсчета, за которую можно принять фоновое содержание химических элементов в основных природных средах. Глобальное загрязнение атмосферы, наличие мощных источников регионального и локального загрязнения (промышленные предприятия, интенсивное сельскохозяйственное воздействие, широко развитая сеть автомагистралей, высокая степень урбанизации всего региона) затрудняет выявление «чистых» фоновых участков в пределах Ставрополья.

Условный фон для почвенного покрова выделенных ландшафтов определялся при проведении экологических исследований на территории края, при этом точкой отсчета,

своеобразным «репером» для дальнейших мониторинговых наблюдений в Ставрополье могут стать литогеохимические и гидрохимические материалы, полученные во время эколого-геохимических экспедиций 2012-2016 гг.

При литохимических исследованиях опробованию подвергается самый верхний почвенный горизонт (0,0-0,2 м), где наблюдается максимальная интенсивность геохимических процессов. Почвенные пробы отбирались на площадках комплексных наблюдений (рисунок 2.2) методом «конверта»: на каждой точке с площади около 10 м^2 исследователи брали по 5 проб почвы (четыре по углам, одну в центре) весом 200 г, тщательно перемешивали сборную пробу, квартовали ее и четвертую часть сборной пробы отправляли на спектральный анализ и другие виды лабораторных исследований.

При гидрохимических исследованиях опробовались основные реки Егорлык, Кума и Терско-Кумский канал. Отобранные гидрохимические пробы — по 6 бутылок в одной пробе — консервировались по стандартным методикам (проба на микроэлементы — соляной кислотой, на фенолы — щелочью, на нефтепродукты — хлороформом) и отправлялись в Региональный лабораторный Центр ОАО «Южгеология».

Снежный покров обладает рядом свойств, делающих его удобным индикатором загрязнения окружающей природной среды, он может использоваться как естественный планшет-накопитель для характеристики атмосферных выпадений в холодный период. Так, при выпадении снега, в результате процессов сухого и влажного вымывания, концентрации загрязняющих веществ в нем оказываются обычно на 2 – 3 порядка выше, чем в атмосферном воздухе. Отбор проб снега не требует сложного оборудования и специальной подготовки рабочего отряда.

Как правило, на рекогносцировочном этапе сеть опробования равномерно покрывает всю исследуемую территорию. При отборе снеговых проб фиксируется время от начала снегостава, чтобы оценить ежесуточную нагрузку изучаемых загрязнителей. Каждая проба отбирается с 1 м² из шурфов, вскрывающих всю мощность снегового покрова (своеобразный «геохимический планшет») в полиэтиленовый кулек, в котором производится оттаивание снега (при комнатной температуре). Затем снеговая вода переливается в чисто вымытые дистиллированной водой стеклянные бутылки, при этом важно не потерять даже миллиграмма пыли, осевшей на снег.

Твердая нерастворимая фракция выделяется путем фильтрования, просушивается и взвешивается. Масса пыли в снеговой пробе служит основой для определения пылевой нагрузки (P_n) – в мг/м² в сутки или кг/км² в сутки. Расчет ведется по формуле: $Pn = M/S_t$, где M – масса пыли в пробе (мг); S – площадь шурфа (м²); t – время от начала снегостава (сутки).

В лаборатории высушенная и взвешенная пыль озоляется в муфельной печи при

температуре 450 – 500 °C для удаления органических примесей и отправляется на спектральный анализ. Снеговая вода, полученная при оттаивании, после фильтрования подвергается полному химическому анализу с определением растворимых форм металлов, нефтепродуктов, фенолов и других химических элементов и их соединений.

Химико-аналитическая база исследований

Основные требования к результатам аналитических исследований определяются необходимостью экспрессного получения данных по максимально широкому комплексу химических элементов — потенциальных загрязнителей окружающей среды, и оценки количественных отношений между элементами с целью выявления приоритетных загрязняющих веществ. В наибольшей степени на стадии геохимического картирования этим требованиям соответствует экспрессный спектральный анализ на дифракционном спектрографе или на «Спектроскане» производства фирмы «Спектрон» (Санкт-Петербург).

Все аналитические работы были произведены в Региональном лабораторном центре ОАО «Южгеология», аккредитованном Федеральным агентством по техническому регулированию и метрологии Российской Федерации 17 февраля 2012 года на проведение химических и спектральных анализов природных сред и промышленных стоков и выбросов. В 2012 году Региональный лабораторный центр ОАО «Южгеология» получил новый Аттестат аккредитации испытательной лаборатории (центра) № РОСС RU.0001.511374. Сведения о методах и средствах измерений и метрологических параметрах результатов измерений приведены в таблице 3.1 (Приложение E).

Камеральная обработка геохимических данных

Наибольшие сложности исследователь обычно испытывает при оценке результатов геохимических наблюдений. Обработка результатов, полученных из аналитической лаборатории, производилась по действующим методикам ИМГРЭ. Одна из главных характеристик геохимической аномалии – ее интенсивность, которая определяется степенью накопления вещества-загрязнителя по сравнению с природным фоном. Уровень аномальности в этом случае определяется коэффициентом концентрации: $K_c = C_i/C_{\phi}$, где C_i – содержание элемента в исследуемом объекте; C_{ϕ} – фоновое его содержание.

Геоэкологические карты распределения загрязняющих веществ в различных компонентах ландшафтов строились с помощью геоинформационной системы ArcGIS 9.3 и модуля SpatialAnalist.

3.2 Маршрутные исследования

Фотографические материалы по изучаемым объектам приведены на рисунках 3.1–3.4.

Рисунок 3.1 – Пойменный ландшафт р. Егорлык

Рисунок 3.2 – Перепады №2 и №3 на р. Егорлык

Рисунок 3.3 – Покойненский перепад на р. Кума

Рисунок 3.4 – Горько-Балковский быстроток, 111 км Терско-Кумского канала

Маршрутное обследование участков проектируемых работ включало:

- уточнение геоморфологических, инженерно-геологических, гидрогеологических и ландшафтных условий, определяющих масштабы негативного воздействия «В.О.» на окружающую среду;
- выявление возможных источников загрязнения почвы, подстилающих пород,
 поверхностных и подземных вод, исходя из анализа современной ситуации и использования
 территории в прошлые годы;
- установление возможных путей миграции и участков концентрации загрязняющих веществ [121].

При маршрутных исследованиях на точках комплексных наблюдений отбирались литогеохимические пробы и пробы речной воды и снега.

При проведении маршрутных исследований уточнялись схемы расположения промышленных предприятий, свалок, отстойников жидких отходов, и других потенциальных источников загрязнения. Специалистами полевых отрядов проводился опрос местных жителей о ретроспективном использовании территории, о происходивших в прошлые годы авариях, прорывах нефтепроводов, коллекторов сточных вод, случаях массовой гибели растений, животных и птиц.

3.3 Оценка уровня загрязнения атмосферы

3.3.1 Источники загрязнения атмосферы

Основные показатели экологического состояния приземных слоев атмосферы в пространственных пределах бассейновых геосистем Ставропольского края приведены в таблице 3.2 (Приложение Е). Стационарные источники выбросов загрязняющих веществ в атмосферу в пределах бассейновых геосистем Ставропольского края приведены в таблице 3.3 (Приложение Е), по отраслям хозяйственной деятельности в таблице 3.4 (Приложение Е), по городам и районным центрам в таблице 3.5 (Приложение Е), по видам и количественным показателям в таблице 3.6 (Приложение Е). Количественные показатели по утилизации загрязняющих веществ отходящих от стационарных источников по видам хозяйственной деятельности приведены в таблице 3.7 (Приложение Е), а по городам и районным центрам в таблице 3.8 (Приложение Е).

Выбросы загрязняющих веществ в атмосферу от автотранспорта имеют устойчивую тенденцию на увеличение (таблицы 3.9, 3.10, 3.11).

Таблица 3.9 – Наличие автотранспортных средств в СК

Виды транспорта (тыс. единиц)	2015	2016
Автомобили, всего в том числе:	677.1	725.4
грузовые	107.7	119.3
автобусы	20.8	20.8
легковые	548.6	585.3

Таблица 3.10 – Количественные показатели выбросов агрязняющих атмосферу веществ от автомобильного транспорта 1

Показатели выбросов (тыс. тонн)	2015	2016
Выброшено загрязняющих веществ	336.6	348.1
в процентах к предыдущему году	140.2	103.4

Таблица 3.11 — Выбросы наиболее распространенных загрязняющих веществ от автомобильного транспорта в $2016 \, \mathrm{r}^1$

		в том числе				
Выброшено загрязняющих веществ	Всего (тыс. тонн)	оксид углерода	оксиды азота	ЛОС	сернистый ангидрид	сажа
	348.1	231.6	73.1	37.6	4.4	1.4

3.3.2 Показатели загрязнения атмосферы

В воздушный бассейн Ставропольского края в 2016 году поступило более 424,7 тысяч тонн загрязняющих веществ. Четыре пятых всех выбросов в атмосферу составляют выбросы автотранспорта, при этом количество транспортных средств в крае постоянно увеличивается. Только за 2008 год на дорогах края прибавилось 48,3 тысяч единиц автотранспорта.

В 2016 году объем выбросов в атмосферу загрязняющих веществ, отходящих от стационарных источников, составил 76,6 тыс. тонн. В атмосферу выбрасывалось 12,0 тыс. тонн оксида углерода, 4,9 тыс. тонн диоксида серы, 21,9 тыс. тонн углеводородов (без ЛОС), 25,9 тыс. тонн оксидов азота. Если в целом по России и в среднем Южному Федеральному округу из общего объема загрязняющих веществ, отходящих от стационарных источников, уловлено и

 $^{^{1}}$ По данным Управления по техническому и экологическому надзору Ростехнадзора по Ставропольскому краю

обезврежено в 2008 году 75,0 %, то по Ставропольскому краю – всего лишь 51,9 %.

В истекшем году в Ставрополье на наблюдаемых предприятиях насчитывалось 31133 стационарных источников выбросов загрязняющих веществ, в том числе 10454 — неорганизованных. 42 % предприятий увеличили выбросы загрязняющих веществ в атмосферу. На их долю приходится 77,6 % общего объема выбросов загрязняющих веществ от стационарных источников. Практически все они имеют установленные нормативы предельно допустимых выбросов. Количество образующихся загрязняющих веществ за год увеличилось на 15,2 %, а выбросы на 10,6 %.

Увеличился объем выбросов на предприятиях по производству и распределению электроэнергии, газа и воды, на предприятиях сельского хозяйства, добычи полезных ископаемых, обрабатывающих производств. В тоже время предприятия транспорта и связи уменьшили объемы выбросов на 7,9 %. Ввод в действие установок по улавливанию и обезвреживанию вредных веществ из отходящих газов на предприятиях, а также осуществление других мероприятий за рассматриваемый период не обеспечили достаточного снижения общего объема выбросов в атмосферу загрязняющих веществ, отходящих от стационарных источников.

Для выявления масштабов загрязнения воздушного бассейна на участках проектируемых работ были использованы материалы инициативной снеговой съемки на территории Ставрополья, выполненной НПП «Экологическая лаборатория» в марте 2012 года. При этом косвенными показателями техногенного пресса являются пылевая нагрузка (кг/км² в сутки) и концентрация тяжелых металлов в твердофазных атмосферных выпадениях (мг/кг нерастворимой неорганической пыли). Пылевая нагрузка, как правило, рассчитывается отдельно для осенне-зимнего периода, когда процессы дефляции почвы минимизированы, и для весенне-летнего сухого периода, когда к промышленным и автотранспортным выбросам добавляются строительные и дорожные пыли, а также продукты ветровой эрозии почвенного покрова.

Суммарное загрязнение по атмосферным выпадениям рассчитывается по формулам Ю. Е. Саета («Геохимия окружающей среды», 1990): $Z_c = \sum K_c - (n-1)$ [99].

$$Z_p = \sum K_p - (n-1),$$
 (3.1)

где Z_c – суммарный показатель концентрации загрязняющих веществ в выпадениях;

 K_c – коэффициент концентрации загрязняющего вещества, $K_c = K_i / K_{\phi o H}$;

 Z_p – суммарная атмохимическая нагрузка; K_p – атмохимическая нагрузка каждого загрязнителя,

$$K_{p} = K_{i}/K_{d} = P_{i} * C_{i}/P_{doop} * C_{doop}$$
 (3.2)

где P – пылевая нагрузка, кг/км 2 в сутки,

 C_i – концентрация элемента в пыли, мг/кг;

n – число определяемых загрязняющих веществ.

Полученные результаты атмохимических исследований позволили оценить уровень загрязнения атмосферы на территории участков проектируемых работ по загрязнению твердофазных и жидких атмосферных выпадений (таблицы 3.12 – 3.14, рисунки 3.5 – 3.6).

В последние годы Всемирная организация здравоохранения относит мелкодисперсную нерастворимую неорганическую пыль к наиболее опасным веществам, загрязняющим атмосферный воздух. Эта пыль, получившая название «наночастицы», адсорбирует на огромной поверхности своих микроскопических частиц ионы тяжелых металлов, кислотные радикалы, металлоорганические соединения. Наночастицы являются опасным аллергеном, обладают канцерогенными свойствами. Именно поэтому уровню загрязнения атмосферы мелкодисперсной пылью (так называемой «пылевой нагрузке»).

Пылевая нагрузка на Баклановском участке в пойме р. Егорлык весной 2015 года составила 488 кг/км^2 в сутки. Эта величина на порядок выше фоновой нагрузки $(13-15\text{кг/км}^2\text{ в}$ сутки), здесь сказывается участие в составе твердофазных атмосферных выпадениях строительной и дефляционной пыли (таблица 3.12).

На Покойненском участке пылевая нагрузка почти вдвое меньше, чем на Баклановском участке, но в 20 раз выше фонового значения. На этом участке в настоящее время не проводятся строительные работы, как на Баклановском участке, но, вероятно, здесь сказывается «техногенный фон» г. Буденновска.

На Кара-Тюбинском участке масса атмосферных выпадений, осевших на снегу, близка к фоновой величине — всего 46,7 кг/км² в сутки. Здесь не ведутся строительные работы, поблизости нет промышленных предприятий, ближайшая автодорога с твердым покрытием расположена в 2 км от участка.

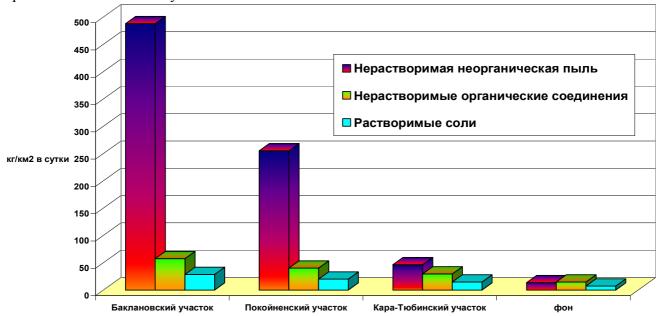


Рисунок 3.5 – Компонентный состав атмосферных выпадений

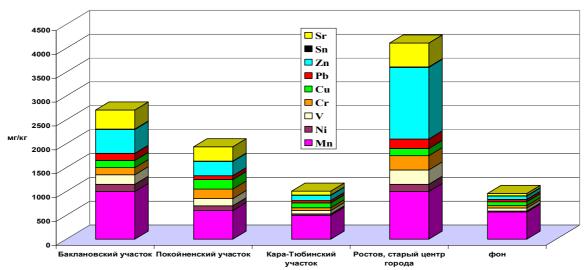


Рисунок 3.6 – Содержание тяжелых металлов в атмосферной пыли

В ходе исследований твердофазные атмосферные выпадения разделяются на нерастворимую неорганическую пыль и нерастворимые органические соединения, растворимые соли определяются в снеговой воде. Рассматривая компонентный состав пыли, отметим явное доминирование нерастворимой неорганической пыли над органическими соединениями. Зимой масса выпадающих из атмосферы растворимых солей сопоставима с массой нерастворимых соединений (таблица 3.12).

Таблица 3.12 – Пылевая нагрузка на территории участков проектируемых работ весной 2016 года

№ π/π	Место отбора проб снега	Нерастворимая неорганическа я пыль	Нерастворимы е органические соединения	Раствори мые соли	Общая масса выпадений из атмосферы
1	Баклановский участок	488,2	57,6	28,8	574,6
2	Покойненский участок	255,3	40,4	20,2	315,9
3	Кара-Тюбинский участок	46,7	29,7	14,85	91,25
4	Ростов, старый центр города (для сравнительного анализа)	1814,5	36,2	18,1	1868,8
5	фон	13,8	14,9	7,45	36,15

Пересчет массы твердофазных выпадений на концентрацию пыли (наночастиц) в воздухе можно произвести по формуле В. М. Хвата (1990): C = 100

$$P_0/2,566p$$
 (3.3)

где C – концентрация пыли в воздухе (мг/м³);

p – плотность частиц аэрозолей, в среднем 2 г/см³,

 P_o – атмохимическая нагрузка (мг/м² в сутки).

Среднесуточная концентрация пыли в воздухе не должна превышать $0,15~{\rm Mг/m^3}$, а максимальная разовая концентрация $-0,5~{\rm Mг/m^3}$. По полученным данным, зимой 2014 года на территории Баклановского участка пылевая нагрузка не превышала 488 кг на 1 км 2 в сутки. Среднесуточная концентрация пыли в воздухе при этом была равна:

$$C = 100*0,00488/(2,566*2) = 0.1 \text{ M}\Gamma/\text{M}^3.$$

Еще меньше среднесуточная концентрация пыли в воздухе на Покойненском участке – $0.06~\rm Mг/m^3$, и тем более – на Кара-Тюбинском участке – около $0.01~\rm Mr/m^3$.

Следовательно, среднесуточная концентрация пыли в воздушном бассейне на территории всех описываемых участков в зимний период не превышает санитарногигиенические нормативы. Летом к промышленным и автотранспортным выбросам добавляются строительные пыли и дефляционный материал, поднимаемый в воздух сильными ветрами, поэтому концентрация пыли в воздухе летом на порядок выше, чем зимой (Приваленко, 2009). Поэтому, следует ожидать, что в теплый период года на этом участке пылевая нагрузка на Баклановском и Покойненском участках может превышать значение ПДК пыли в воздухе, принятое на территории Российской Федерации.

Своеобразными индикаторами уровня загрязнения атмосферы являются соединения тяжелых металлов. При интерпретации результатов атмохимических исследований использовались ориентировочные материалы по концентрации химических элементов в пылевых выпадениях из атмосферы, приведенные в «Методических рекомендациях» (1986).

Камеральная обработка результатов, полученных из аналитической лаборатории, производилась по методике ИМГРЭ (1986, 1990). Одна из главных характеристик геохимической аномалии – ее интенсивность, которая определяется степенью накопления вещества-загрязнителя по сравнению с природным фоном. Уровень аномальности в этом случае определяется коэффициентом концентрации: $K_c = C_i/C_\phi$, где C_i – содержание элемента в исследуемом объекте; C_ϕ – фоновое его содержание.

На участках, прилежащих к автомагистралям, как правило, концентрация тяжелых металлов в пыли значительно выше, чем в дефляционной пыли природных ландшафтов. Это связано с выбросами автотранспорта и участием в формировании общей пылевой массы продуктов истирания шин и автодорожного полотна. Усилением дефляционных процессов в теплый период объясняется уменьшение доли техногенной составляющей, поэтому концентрация большей части тяжелых металлов в атмосферной пыли летом будет несколько ниже, чем зимой. Напротив, концентрация стронция и бария – спутников строительной индустрии – в этот период может возрастать (Приваленко, 2009).

Таблица 3.13 – Данные по фоновому содержанию микроэлементов в твердофазных зимних выпадениях из атмосферы

Микроэлементы		Содержание в пыли, мг/кг				
	Данные ИМГРЭ	Данные ОАО «Южгеология»	Кларк			
Бериллий	1,5	1,2	3,8			
Ванадий	64	90	90			
Кадмий	0,3	-	0,13			
Кобальт	7	9	18			
Марганец	570	510	1000			
Медь	80	46	47			
Молибден	1	0,7	1,1			
Никель	20	54	58			
Олово	5,2	2	2,5			
Свинец	50	19	16			
Серебро	0,1	-	0,07			
Стронций	50	99	340			
Хром	50	80	83			
Цинк	70	130	83			

Таблица 3.14 — Валовое содержание микроэлементов в твердофазных атмосферных выпадениях, мг/кг

Место отбора проб	Mn	Ni	V	Cr	Cu	Pb	Zn	Sn	Sr
Баклановский участок	1000	150	200	150	150	150	500	8	400
Покойненский участок	600	100	150	200	200	80	300	6	300
Кара-Тюбинский участок	500	30	70	60	100	50	110	6	80
Ростов, старый центр города									
(для сравнения)	1000	150	300	300	150	200	1500	10	500
фон	570	20	64	50	80	50	70	5,2	50

Кислотно-щелочная реакция атмосферных осадков на территории описываемых участков близка к нейтральной (таблицы 3.15, 3.16), такие осадки не угрожают закислением жизнеобеспечивающих сред.

Таблица 3.15 – Химический состав снеговой воды (мг/л)

Место отбора проб	Жест кость	рΗ	Минер ализац ия	HCO 3	Cl	SO ₄ -2	NO ₃	Ca ⁺²	Mg ⁺²	Na ⁺	NH4 ⁺
Баклановский											
участок	1,40	6,8	126,0	22,5	11,3	36,6	3,22	2,5	3,8	21,6	0,6
Покойненский											
участок	0,60	6,6	100,0	33,6	7,1	37,9	2,41	8,0	2,6	20,5	0,5
Кара-Тюбинский уч.	0,65	6,5	88,0	36,6	3,5	23,9	3,09	6,3	4,3	11,3	0,9
г. Ростов-на-Дону	2,20	7,3	298,0	79,3	49,6	99,6	8,66	4,9	3,6	96,6	0,7
фон	0,10	7,1	34,0	6,1	5,3	11,5	1,20	2,0	0,3	8,3	0,1

В теплый период аэрозоли с рН = 5,8 - 6,5 нейтрализуются карбонатной

мелкодисперсной почвенной пылью, и кислотно-щелочная реакция атмосферных выпадений смещается в щелочную сторону.

Критерии оценки масштабов загрязнения атмосферного воздуха даны в таблицах 3.17 – 3.20.

Таблица 3.16 – ПДК загрязняющих веществ в атмосферном воздухе, мг/м³

Загрязняющие	ПДК	ПДК максимально	Класс опасности
вещества	среднесуточная	разовая	
	Осн	ювные	
Твердые (пыль)	0,15	0,5	3
Диоксид серы	0,05	0,5	3
Диоксид азота	оксид азота 0,04		2
Оксид азота	Оксид азота 0,06		3
Оксид углерода	3	5	4
	Специ	фические	
Аммиак	0,04	0,2	4
Хлористый водород 0,2		0,2	2
Сероуглерод	0,005	0,03	2
Бенз(а)пирен	0,000001	-	1

Таблица 3.17 – Критерии оценки степени загрязнения атмосферного воздуха по максимальным разовым концентрациям (превышения ПДК)

Показатели	Экологическое	е бедствие, ст.59	Чрезвычайная экологическая ситуация,		
			ст.58		
1 класс	>5	>30	>3-5	>30	
П класс	>7,5	>30	>5-7,5	>30	
Ш класс	12,5	→50	8-12,5	>50	
1У класс	20	>50	12,5-20	>50	

Таблица 3.18 – Критерий оценки степени загрязнения атмосферного воздуха по среднесуточным концентрациям (превышения ПДК)

Показатели	Экологическое бедствие		Чрезвычайная экологическая ситуация		
	«К»	% проб выше	«К»	% проб выше «К»	
		«K»			
I класс	>3	>20 или >7	2-3	>20 или >7 дней подряд	
опасности		дней подряд			
II класс	>5	- « -	3-5	- « -	
опасности					
III класс	>7,5	>30 − « -	5-7,5	>30 − « -	
опасности					
IV класс	>12	>30 − « -	8-12	>30 − « -	
опасности					

Степень загрязнения атмосферного воздуха устанавливался по кратности превышения ПДК с учетом класса опасности загрязняющего вещества, суммации биологического действия

токсикантов и частоты превышения ПДК.

Среднегодовые значения ПДК $_{rog}$ выражаются через значение среднесуточной ПДК $_{cc}$ по формуле: ПДК $_{rog}$ = а * ПДК $_{cc}$.

Профессором В.В. Приваленко (2003, 2009) предложена схема районирования исследуемых территорий по показателям суммарного загрязнения атмосферы (таблица 3.21).

Таблица 3.19 – Значение коэффициента «а» для различных веществ

Вещества	Коэффициент «а»
Аммиак, азота оксид, азота диоксид, бензол, бенз/а/пирен, марганца	1
диоксид, озон, серы диоксид, сероуглерод, синтетич. жирные кислоты,	
фенол, формальдегид, хлоропрен	
Трихлорэтилен	0,4
Амины, анилин, взвешенные вещества (пыль), углерода оксид, хлор	0,34
Сажа, серная кислота, фосфорный ангидрид, фториды (твердые)	0,3
Ацетальдегид, ацетон, диэтиламин, толуол, фтористый и хлористый	0,2
водород, этилбензол	
Акролеин	0,1

Таблица 3.20 — Критерии оценки среднегодового загрязнения атмосферного воздуха $(C_i/C_{\phi o H})$

Показатели	Параметры					
	Экологичес	Чрезвычайная	Относительно			
	кое	экологическая	удовлетворительная			
	бедствие	ситуация	ситуация			
Комплексные показатели						
среднегодового загрязнения						
воздуха:						
1 вещество	Более 16	8-16	1			
2-4 вещества	Более 32	16-32	2			
5-9 веществ	Более 48	32-48	3			
10-16 веществ	более 64	48-64	4			
16-25 веществ	более 80	64-80	5			

Таблица 3.21 – Слагаемые суммарного загрязнения атмосферы, определяемые по массе твердофазных выпадений из атмосферы (кг/км 2 в сутки)

Уровень	ПЫЛЬ	свинец	хром	цинк	медь	сульфаты	аммиак	Zc
загрязнения								
Незначитель	менее 200	менее	менее	менее 1	менее	менее 2	менее 0,1	2-16
ное		0,1	0,5		0,1			
загрязнение								
Слабое	200-800	0,1-0,5	0,5-1,5	1,0-2,0	0,1-0,5	2,0-10,0	0,1-1,0	16-64
среднее	800-1600	0,5-1,0	1,5-5	2,0-4,0	0,5-1,0	10,0-50	1,0-3,0	64-128
Сильное	1600-	1,0-2,0	5,0-15	4,0-8,0	1,0-2,0	50-100	3,0-5,0	128-256
	3200							
Очень	более	более 2	более	более 8	Более 2	более 100	более 5	более 256
сильное	3200		15					

Используя опыт составления эколого-геохимических атласов Большого Сочи, Ростовской области (Ростова-на-Дону, Азова и др.) позволил нам разработать следующие показатели экологического состояния воздушного бассейна (таблица 3.22).

Таблица 3.22 – Показатели экологического состояния воздушного бассейна исследуемой территории

	Параметры экологической обстановки							
Показатели	Удовлетворите	Напряженн	Кризисн	Критическа	Катастрофическ			
Показатели	льная (фон-0,5	ая (0,5-1,0	ая	Я	ая			
	ПДК)	ПДК)	1-2 ПДК	2-5 ПДК	5-20 ПДК			
Пылевая нагрузка,	20-400	400-800	800-	1600-4000	4000-16000			
$\kappa \Gamma / \kappa M^2$ в сутки		.00 000	1600	1000 1000	1000 10000			
C_{Pb} в пыли, мг/кг	10-20	20-100	100-200	200-500	500-2000			
C_{Cu} в пыли, мг/кг	10-20	20-100	100-200	200-500	500-2000			
C_{Zn} в пыли, мг/кг	50-150	150-300	300-600	600-1500	1500-6000			
K_c	2-8	8-32	32-128	128-512	Свыше 512			

В целом, результаты химического и спектрального анализа зимних выпадений из атмосферы на территории всех описываемых участков свидетельствуют о сравнительно невысоком уровне загрязнения атмосферы тяжелыми металлами и другими вредными примесями на Баклановском и Покойненском участках. Коэффициенты концентрации тяжелых металлов в пыли не превышают значений 2 – 4, что значительно ниже, чем в крупных промышленных центрах. На Кара-Тюбинском участке воздушный бассейн не загрязнен техногенными выбросами, пылевая нагрузка и концентрация тяжелых металлов в твердофазных атмосферных выпадениях близки к фоновым значениям.

3.4 Гидрохимическая оценка состояния поверхностных вод

3.4.1 Источники загрязнения поверхностных вод

На основе анализа статистических данных установленные основные источники загрязнения водных объектов в пределах бассейновых геосистем Ставропольского края.

Результаты анализа статистических данных в таблицах 3.23 – 3.25 (Приложение Е), представлены основные количественные показатели по загрязнению водных объектов и приземных слоев атмосферы. Муниципальные работы, на территории которых намечается хозяйственная деятельность по использованию водных ресурсов для выработки электрической

энергии на Малых ГЭС (МГЭС), приведены в составе всех муниципальных районов Ставропольского края.

3.4.2 Показатели качества вод в зоне предполагаемых ГЭС

Основная поступающих объекты масса, загрязняющих веществ В водные Ставропольского края, приходится на бассейны рек Кума (около 57 %), Кубань (12 %), Калаус (11 %) и Егорлык (9 %). При этом загрязняющие вещества поступают в реки с водами притоков, на которых расположены наиболее крупные жилищно-коммунальные и промышленные предприятия. В ряде городов и населенных пунктах (г. Светлоград, г. Ипатово и др.) очистные сооружения работают не эффективно, вследствие их недогрузки из-за недостаточно развитых канализационных сетей. Физически и морально устаревшие комплексы сооружений по очистке сточных вод не обеспечивают установленных нормативов очистки. Не решилась проблема утилизации и очистки коллекторно-дренажных вод, отрицательно влияющих на качество поверхностных вод. По прежнему ливневые сточные воды сбрасываются в водоемы и водотоки Ставропольского края без очистки. Для совокупной оценки используют расчетный суммарный показатель для превышающих ПДК химических веществ (таблицы 3.26, 3.28, Приложение Д). В качестве основного показателя степени истощения водных ресурсов берется норма безвозвратного изъятия поверхностного стока. Гидрохимическим опробованием рек и каналов на описываемых участках получены следующие результаты качества воды (таблица 3.27).

Таблица 3.26 – Данные по критериям санитарно-гигиенической оценки эпидемической опасности питьевой воды из водоисточников питьевого и рекреационного назначения

Показатели	Параметры					
	Экологическое	Чрезвычайная	Относительно			
	бедствие (ст.59)	экологическая	удовлетворительная			
		ситуация (ст.58)	ситуация			
	Централизованное в	одоснабжение				
Патогенные	Более 10	Единичная	0			
микроорганизмы		встречаемость				
(% положительных проб)						
Коли-индекс	Более 50	Более 50	Менее 3			
Индекс колифага	Более 10	Не более 10	0			
,	Децентрализованное	водоснабжение				
Патогенные	Более 10	Единичная	0			
микроорганизмы		встречаемость				
(% положительных проб)						
Коли-индекс	Более 100	Более 10	Не более 10			

Наибольшую часть загрязняющих веществ, поступающих в водные объекты со сточными водами, составляют органические вещества, соли и взвеси.

Наилучшее качество воды зафиксировано в р. Егорлыке, вода по всем показателям соответствует качеству питьевых вод. Вода в реке Куме и в Терско-Кумском канале не соответствует ПДК вод хозяйственно-питьевого назначения по минерализации и жесткости, содержанию сульфатов, солей магния, натрия и железа.

Таблица 3.27 – Химический состав речных вод на территории Ставрополья, мг/дм³

Место отбора проб	Жест кость	рН	Min	HCO ₃	Cl	SO ₄	NO ₃	Ca	Mg	Na+K	NH ₄	Fe
р. Егорлык	7,2	7,0	704	146,4	56,7	341,1	0,72	68,1	61,3	89,2	0,2	0,3
Терско- Кумский канал	14,6	7,9	1204	195,2	92,2	627,9	5,8	142,3	120,9	99,4	0,3	0,4
р. Кума	17,0	7,3	2024	256,2	319,1	814,1	26,1	162,3	143,5	396,3	0,5	1,5
ПДК для ХПВ	7,0	6-8	1000		350		45		120	200	2,0	0,3

Таблица 3.28 — Критерии санитарно-гигиенической оценки опасности загрязнения питьевой воды и источников питьевого водоснабжения химическими веществами (по превышению ПДК)

№ Показатели		Параметры					
Π/Π							
		Экологическое	Чрезвычайная	Относительно			
		бедствие	экологическая	удовлетворительная			
		(ст.59)	ситуация	ситуация			
			(ст.58)				
1	2	3	4	5			
		1. Основные по	казатели				
1.1.	Содержание токсикантов	Более 3	2-3	В пределах			
	1 класса опасности (Ве,			гигиенических			
	Hg, Ga, бенз/а/пирен,)			нормативов (ПДК)			
	превышение ПДК						
1.2.	2 классаопасности (Al,	Более 10	5-10	В пределах			
	Ba, B, Cd, Mo, As, NO ₂ ,			гигиенических			
	Pb, Se, Sr, Zn)			нормативов (ПДК)			
	2	. Дополнительные	показатели				
2.1.	3-4 классов опасности	Более 15	10-15	В пределах			
	(NH ₃ , NO ₃ , Ni, Cr, Cu,			гигиенических			
	Mn, Zn, фенолы,			нормативов (ПДК)			
	нефтепродукты,						
	фосфаты)						
Физико-химические свойства							
2.2.	рН	Менее 4	4-5,2	- « -			
2.3.	БПК полн., мг 0_2 /л	Более 10	8-10	- « -			
2.4.	XПК, мг 0_2 /л	Более 80	60-80	- « -			

продолжение таблицы 3.28

1	2	3	4	5
2.5.	Растворимый кислород,	Менее 1	1-2	Более 4
	мг/л			
Органолептические характеристики				
2.6.	Запах и привкус, баллы	5	3-4	Не более 1
2.7.	Плавающие примеси	Пленка темно-	Яркие полосы	Отсутствует
	(пленки, пятна	красной	или пятна	
	масляные)	окраски, до	тусклой	
		70% площади	окраски	

3.5 Оценка состояния подземных вод в верхних слоях атмосферы

Мониторинговые наблюдения за гидрохимическим состоянием подземных вод (ПВ) свидетельствуют о том, что ПВ большинства месторождений с утвержденными запасами продолжают оставаться относительно чистыми, т.е. пригодными для дальнейшей эксплуатации. В то же время, по ряду эксплуатационных скважин некоторых водозаборов отмечены периодические всплески повышенного содержания различных опасных веществ. Во многих случаях эти факты при повторных проверках не подтверждаются, т.е. носят случайный характер или указывают на неудовлетворительное состояние самих скважин.

Наблюдениями также выявлен ряд регионов с повышенной природной концентрацией некоторых химических элементов и их соединений, в пределах которых не исключено загрязнение водоносных горизонтов в результате их эксплуатации или другой хозяйственной деятельности на поверхности земли. Такими регионами являются:

- Обширные регионы повышенной (до 2 4 ПДК) концентрации природного аммония в ПВ в пределах АКАБ и ВПАБ,
- Регионы повышенной природной концентрации нитратов (до 2 ПДК) в ПВ среднесарматских отложений на Ставропольской возвышенности.

На фоне этих регионов природного загрязнения выделяются несколько участков загрязнения техногенного генезиса. Такими участками являются:

- Водоносные горизонты среднесарматских отложений в г. Ставрополе, которые в черте города загрязнены нефтепродуктами, аммонием, нитратами, тяжелыми металлами в количествах от нескольких ПДК до нескольких десятков ПДК и которые уже нельзя использовать для питьевых целей.
- Гофицкое месторождение пресных вод, находящееся в зоне интенсивной сельскохозяйственной деятельности. Здесь на фоне природного (до 0,5 – 1 ПДК) содержания

нитратов выявлены участки 2-кратного превышения этого ингредиента по родникам, область питания которых приурочена к местам размещения сельскохозяйственных предприятий.

- Прикумское месторождение ПВ, эксплуатируемое водозаборами Буденовского горводоканала и ООО «Ставролен», по скважинам которых в 2007 году были выявлены факты резкого кратковременного увеличения нитритов (до 20 28 ПДК).
- Область распространения пресных вод субнапорных средне- и нижнечетвертичных отложений в регионе длительной ирригации на востоке края, где на отдельных участках минерализация этих вод из-за внедрения дренажных вод в подземные водоносные горизонты увеличилась в 5 раз.

На основе результатов мониторинговых наблюдений оценки состояния подземных вод составлена карта-схема (рисунок 3.7).

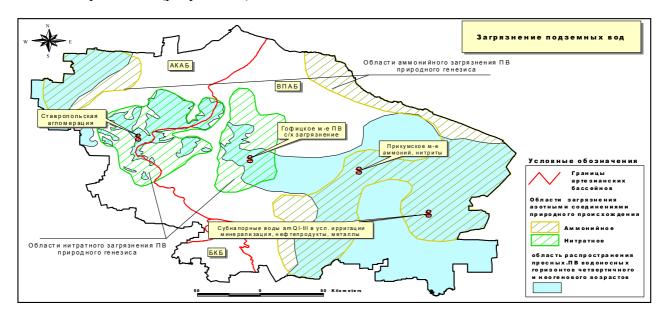


Рисунок 3.7 – Карта-схема состояния подземных вод в пределах бассейновых геосистем Ставропольского края

3.6 Оценка состояния почвенного покрова на участках проектируемых «В.О.»

В Ставропольском крае ежегодно проводится общий мониторинг почвенного покрова на площади более 100 тыс. га, мониторинг гумусного состояния, наличия питательных веществ, реакции почвенного раствора — на площади 742 тыс. га, мониторинг биологической активности почв изучается более чем на28 тыс. га, агроэкологический мониторинг загрязнения земель: сплошным обследованием на площади более 280 тыс. га, локальным мониторингом на 113

ключевых участках, отбор проб и контроль за качеством вод осуществляется из 117 водных источников. Мониторинг земель, подверженных засолению сплошным обследованием на площади более 3 тыс. га, наблюдение на постоянных ключевых участках на площади 1,2 тыс. га. Мониторинг земель, подверженных подтоплению, — на 80 тыс. га, в том числе 70 тыс. га сплошным обследованием и наблюдения на постоянных ключевых участках на площади 10,0 тыс.га. Мониторинг земель, подверженных эрозии — на площади 5,7 млн. га.

Земли Ставрополья подвержены ряду процессов, негативно влияющих на состояние земельных ресурсов, основным из которых является водная и ветровая эрозия, подтопление, переувлажнение и заболачивание, проявляющиеся на площади 1,9 тыс. га.

Опасность ветровой эрозии существует на 95 % территории края, водной — на 82 % и совместного проявления обоих видов эрозии — на 77 % от общей площади земель. Наибольшую площадь в составе эродированных земель занимают почвы, подверженные водной эрозии — 914 тыс. га, или 16,2 % от площади сельхозугодий. На долю дефлированных почв приходится 13,3 %, что составляет 754 тыс. га. Совместное проявление процессов водной и ветровой эрозии выявлено на площади 123 тыс. га, то есть на 2,2 % площади сельхозугодий.

Анализ динамики состояния плодородия почв за последние 20 лет свидетельствуют о том, что в среднем по краю площади с низким содержанием гумуса ежегодно увеличиваются на 1%, фосфора — на 5%, калия — на 3%. Баланс питательных элементов в земледелии отрицательный. Отчуждение из почвы в последние годы превышало внесение: по фосфору 12-15 кг/га, по калию — 30-40 кг/га, дефицит гумуса составлял от 400 до 700 кг/га.

Оценивая эколого-токсикологическое состояние поверхностного горизонта почв по валовому содержанию тяжелых металлов, можно отметить, что состояние земель в целом удовлетворительное. Содержание тяжелых металлов в почвах основной части территории Ставропольского края значительно ниже допустимых концентраций. Содержание остаточного количества пестицидов в почве установлено в виде следов или не обнаружено.

На аллювиально-луговых почвах, использующихся под многолетние насаждения, отмечается превышение ПДК подвижной и валовой формами меди – в 2,3 – 3,8 раза (уровень загрязнения от среднего до высокого). Причиной загрязнения, по всей видимости, является несоблюдение регламентов при обработке медьсодержащими пестицидами виноградников.

В песчаных и супесчаных почвах также отмечаются превышения ОДК никелем, кадмием и мышьяком (1,1-1,3) раза — уровень загрязнения низкий). Необходимо отметить, что нормативы для песчаных и супесчаных почв в несколько раз более жесткие, чем для суглинистых почв, и абсолютное количество тяжелых металлов (в мг/кг) здесь не превышает средние значения для почв Ставропольского края.

3.7 Бытовые и промышленные отходы

На территории Ставропольского края накопилось свыше 7 млн. тонн бытовых и промышленных отходов на 500 зарегистрированных свалках в городах и сельских поселениях. Оборудованных в соответствии с санитарными нормами полигонов для утилизации твердых отходов потребления и производства нет. Особенно тревожное положение создалось в зоне КМВ, где действуют 83 свалки, 78 из них эксплуатируются без технических документов, без согласования с санэпиднадзором. Кроме того, есть еще 55 стихийных свалок. На свалках появляются токсичные промышленные отходы, например, люминесцентные лампы, содержащие ртуть. Каждая свалка — это экологическая бомба, готовая взорваться эпидемией, загрязнить почву, воду, воздух. Сконцентрированные в отвалах и свалках отходы являются источником загрязнения поверхностных и подземных вод, атмосферного воздуха, почв и растений.

В Ставрополье функционируют 2 полигона по утилизации промышленных отходов (г. Невинномысск и г. Буденновск) и один шламонакопитель (г. Невинномысск). Полигон токсичных промышленных отходов в г. Буденновске принадлежит ООО «Ставролен». Проектная мощность полигона 14 тыс. м³, в том числе 5 железобетонных бункеров, каждый рассчитан на 200 м³ жидких отходов. За год на полигон вывозится около 100 тонн промышленных отходов.

В крае имеется 187 складов для хранения ядохимикатов и пестицидов, в т.ч. 116 приспособленных. В г. Невинномысске находится единственная в крае установка по обезвреживанию ртутьсодержащих люминесцентных ламп УРС-2М, эксплуатируемая ООО «Эколог» с 1996 года. Производительность установки около 100 тысяч перерабатываемых ламп в год, фактически за 2007 год на ней было утилизировано 115 тыс. штук люминесцентных ламп, на перерабатывающее предприятие г. Москвы сдано 137 кг ртути. Установка обслуживает территорию всего края.

В рамках выполнения Федеральной целевой программы «Юг России», администрацией КМВ в 2003 году были приобретены 3 установки «Медиберн» и на их основе создано предприятие ООО «Шалфей» по термической утилизации медицинских и ветеринарных отходов для учреждений региона КМВ.

3.8 Рекомендации к программе экологического мониторинга на участках строительства МГЭС

Согласно СП 11-102-97 «Инженерно-экологические изыскания для строительства» (п. 4.90), стационарные экологические наблюдения следует проводить в следующих случаях: при проектировании и строительстве объектов повышенной экологической опасности. Проектирование, организация и проведение мониторинга требуют специальных методических проработок.

Оптимальная организация стационарных наблюдений (локального системного комплексного экологического мониторинга (СКЭМ)) должна предусматривать четыре последовательных этапа:

- проведение предварительного обследования с целью установления основных компонентов природной среды, нуждающихся в мониторинге, определение системы наблюдаемых показателей, измерение фоновых значений;
- проектирование постоянно действующей системы экологического мониторинга, ее оборудование и функциональное обеспечение, организация взаимодействия с аналогичными системами других ведомств;
- проведение стационарных наблюдений с целью определения тенденций изменения показателей состояния в природных средах;
- отслеживание и моделирование экологической ситуации, составление краткосрочных и долгосрочных прогнозов и выдача рекомендаций.

Программа мониторинга разрабатывается совместно со специально уполномоченными территориальными природоохранными органами и другими заинтересованными организациями и согласовывается с территориальными органами исполнительной власти.

Программой мониторинга устанавливаются:

- виды мониторинга (инженерно-геологический, гидрогеологический и гидрологический, мониторинг атмосферного воздуха, почвенно-геохимический, фитомониторинг, мониторинг обитателей наземной и водной среды);
 - перечень наблюдаемых параметров;
 - расположение пунктов наблюдения в пространстве;
 - методика проведения всех видов наблюдений;
 - частота, временной режим и продолжительность наблюдений;
 - нормативно-техническое и метрологическое обеспечение наблюдений.

Программа комплексного экологического мониторинга для проектируемых малых ГЭС должна быть разработана на основе материалов многолетних эколого-геохимических наблюдений, выполняемых.

Система комплексного экологического мониторинга (СКЭМ) состоит из сети постоянных пунктов, на которых производятся регулярные наблюдения за загрязнением атмосферы, водных объектов, почвенного покрова, и периодических экспедиционных исследований на отдельных точках, створах, площадках для определения влияния техногенеза на окружающую среду и здоровье человека, для оценки эффективности природоохранных мероприятий [91 – 98].

Перечень контролируемых атмосферном загрязняющих веществ воздухе устанавливается по результатам инвентаризации выбросов и согласуется с контролирующими органами, в обязательном порядке контролю подлежат CO₂, NO_x, C_nH_m, сажа. Программа наблюдений за химическим составом поверхностных и подземных вод включает общие гидрохимические исследования, органолептические свойства (запах, привкус, цветность, мутность), общесанитарные показатели (БПК_n, ХПК, взвешенные вещества, минерализация, pH), определение приоритетных загрязняющих веществ (аммиак, нитрат-ион NO₃, нитрит-ион NO₂, хлориды Cl, сульфаты, железо общее, нефтепродукты, фенолы, СПАВ и растворимые соединения металлов). При выявлении загрязнения подземных и поверхностных вод пробы воды на гидрохимических створах отбирают сразу после обнаружения загрязнения, затем через 10, 30, 60 дней. Допускается проводить более частые интервалы отбора проб.

Отбор проб почвы проводит с учетом мощности продуктивных горизонтов, вертикальной структуры, неоднородности почвенного покрова, рельефа и климата местности. Периодический контроль за состоянием почвенного покрова осуществляется на режимных пунктах 1 раз в три года. На сегодняшний день выполнены реперные исследования уровня загрязнения почвенного покрова, полученные геохимические данные могут стать «точкой отсчета» для последующих литохимических исследований.

Мониторинг состояния растительного покрова и животного мира в районе производства работ предназначен для получения данных о жизнеспособности растительности и зооценозов на контролируемой территории до начала работ и после их завершения. Основные контролируемые параметры: общее состояние растительного и животного мира; видовое разнообразие; виды-индикаторы; численность видов (для животных); биопродуктивность (для растений); состояние редких и особо охраняемых растительных сообществ, видов растений и животных.

По основным компонентам окружающей природной среды (атмосферный воздух, водные объекты, почвенный покров, биота) и по каждому пункту наблюдений на основе

непрерывно пополняющейся информации о состоянии окружающей природной среды ежегодно должна уточняться программа наблюдений и перечень контролируемых веществ, периодичность наблюдений, оптимизируются методики отбора и анализа проб. Для обобщения и визуализации получаемой информации используется ArcGIS-9 со встроенной интегральной базой данных.

Программа действий СКЭМ нами рекомендуется осуществляеть в следующей последовательности:

- 1. Сбор информации в организациях, ведущих региональный и локальный мониторинг воздушного бассейна и водных систем, биоценозов и источников загрязнения.
- 2. Создание единого банка данных, связанного с ГИС. Разработка электронной основы карты экологического мониторинга на исследуемой территории.
- 3. Обобщение собранной информации, анализ существующей экологической ситуации. Районирование района работ по уровню техногенной нагрузки и масштабам современного загрязнения окружающей среды.
- 4. Обоснование необходимого числа пунктов комплексных наблюдений. Методическое и лабораторное обеспечение комплексного экологического мониторинга.
- 5. Расчет аэрального поступления загрязняющих веществ на исследуемую территорию в условиях регионального и локального загрязнения атмосферы. Построение электронных карт распределения твердофазных и аэрозольных выпадений из атмосферы.
- 6. Расчет поступления загрязняющих веществ с техногенными водными потоками. Определение величины поверхностного стока в природных условиях и при проведении хозяйственных мероприятий.
- 7. Определение уровня химического загрязнения наземных и водных ландшафтов в районе строительства газопровода. Визуализация уровня загрязнения водных систем и наземных ландшафтов на электронных картах.
- 8. Определение экологической емкости экосистем (способности экосистем к самоочищению), картирование наиболее уязвимых участков.
- 9. Определение масштабов негативных проявлений экзогенных геологических процессов (воздушная и водная эрозия, оползни, просадки, подтопление, засоление, переотложение смытого материала в русле реки). Нанесение участков развития экзогенных геологических процессов на электронную карту.
- 10. Выявление тенденции уменьшения (увеличения, сохранения) биоразнообразия на исследуемой территории.
- 11. Информирование административных структур, природоохранных организаций и населения о результатах экологического мониторинга.

3.9 Выводы по третьей главе

В соответствии нормативно-правового законодательства, методики проведения экологических исследований на участках проектирования и строительства водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н», включающих в себя геохимическое картирование ареалов загрязнения окружающей среды, маршрутных, лабораторных и камеральных исследований, оценки уровня загрязнения атмосферы, гидрохимической оценки состояния поверхностных и подземных вод, оценки состояния почвенного покрова, анализа бытовых и промышленных отходов, выполнена оценка экологического состояния, как фактора экологической безопасности, в природных средах на участках проектируемых работ строительства Малых ГЭС для выработки электрической энергии.

Для обеспечения экологической безопасности в зонах влияния Малых ГЭС на оросительных системах Ставропольского края разработаны рекомендации на проведение системного комплексного экологического мониторинга (СКЭМ) включающего в себя сеть регулярных наблюдений и периодических исследований на отдельных точках, створах, площадках бассейновой геосистемы.

ГЛАВА 4 ПРОГНОЗ ИЗМЕНЕНИЯ ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ В ЗОНАХ ВЛИЯНИЯ ВОДОХОЗЯЙСТВЕННЫХ ОБЪЕКТОВ, КАК ФАКТОРА ОБЕСПЕЧЕНИЯ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ

4.1 Теоретические основы оценки взаимодействия водохозяйственного объекта в составе ПТС «П.С. – В.О. – Н»

В системном, энерго-энтропийном рассмотрении процессов взаимодействия «В.О.» с природными средами в пространственных пределах оросительных в составе ПТС «П.С.-В.О.-Н», которые определяются непрерывным движением потов вещества, энергии и информации. В ходе этого движения реализуются процессы самоорганизации и функционирования «В.О.», которые вносят определенные изменения в естественные процессы взаимодействия природных (биотических, абиотических) компонентов. Процессы развития в природных системах определяются изменениями, а не сохранением. Но сохраняться может не только «застывшее» и «недвиженное», а сохраняться на протяжении определенного периода времени (периода эксплуатации «В.О.») может тенденция изменений. Если эта тенденция сохраняется на протяжении определенного периода времени, то следовательно можно сделать вывод о закономерности рассматриваемого процесса. Так, если в рассматриваемой системе доминирует тенденция на увеличение потребления свободной энергии (E_{ceo}) за счет которой совершается работа, то такая система развивается или нормально функционирует (рисунок 4.1) [13, 21, 39–41].

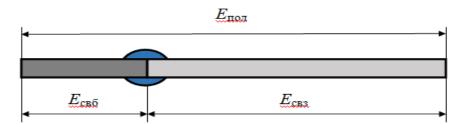


Рисунок 4.1- Схемы энергетического баланса в ПТС «П.С.-В.О.-Н»

Если наблюдается тенденция роста связной энергии (E_{css}), что эквивалентно росту энтропии (S), то такая система деградирует и не развивается, что наблюдается в явлениях неживой природы. Явления, живой и неживой природы это разные классы явлений реального мира, которые характеризуются противоположными тенденциями развития и функционирования. Объединяющим началом в этих противоположных тенденциях, как ранее

отмечалось, является закон сохранения полной мощности (N_{non}), в соответствии с которым любое изменение полезной мощности (P) компенсируется изменением мощности потерь (G):

$$N_{non} = P + G \Longrightarrow \left[L^5 T^{-5} \right] \tag{4.1}$$

Изучение рассматриваемых ПТС «П.С.-В.О.-Н», где центральным компонентом принимается «В.О.», который определенным образом изменяет скорости и направления потоков вещества, энергии и информации в пространственных пределах зоны действия данного «В.О.», как правило, связанно с комплексом натурных и лабораторных исследований по определению качественных и количественных показателей, характеризующие процессы взаимодействия между компонентами рассматриваемой системы. Качественные и количественные показатели процессов взаимодействия «В.О.» с окружающей природной средой в пределах оросительной системы выражаются определенными физическими величинами. Важным ключевым вопросом в методологии системного изучения ПТС «П.С.-В.О.-Н» является физическая величина, которая может быть принята в качестве инварианта при исследовании тех или иных явлений, наблюдаемых в процессах взаимодействия техногенного компонента с окружающей природной средой [10].

В рассматриваемых ПТС «П.С.-В.О.-Н» взаимодействие «В.О.» с окружающей его природной средой выражается в виде определенных физических величин, таких как: сила, скорость, масса, давление, плотность, геометрические размеры и химических соединений в виде концентрации того или иного вещества [38].

Мощность как инвариант является наиболее общей величиной, охватывающей наиболее широкий класс систем. В системе пространственно-временных величин $[L^RT^S]$ энергия имеет размерность $[L^5T^4]$, мощность $[L^5T^5]$. Используя это важное свойство энергии применительно, как к природным, так и к ПТС «П.С.-В.О.-Н» можно будет выражать количественную и качественную оценку энергетического уровня влияния (воздействия) системы или отдельных ее компонентов на окружающую среду.

Взаимодействие ПТС «П.С.–В.О.–Н» с окружающей ее ППБ_г, являющиеся частью биосферы Земли, выполняется в соответствии с законом «Сохранения мощности», который, как отмечается в работе [7], является базовым инвариантом, как в масштабе глобальной системе «Природа — Общество — Человек», так и на локальном уровне рассматриваемых пространственных пределов оросительных систем функционирующих в пределах бассейновой геосистемы. Согласно закона сохранения мощности (N_{non}), выражения 4.1 любое изменение полезной мощности (P) компенсируется изменением мощности потерь (G).

Используя закон сохранения мощности, выражающий соотношения полезной мощности (P) и мощности потерь (G) под контролем полной мощности (N_{non}) , можно производить оценку

состояния и направленность процессов взаимодействия «Водохозяйственного объекта» с природными средами в пространственных пределах оросительной системы.

Экологическое состояние в пространстве и времени в зонах влияния «Водохозяйственного объекта» определяется движением потоков вещества, энергии и информации, которые количественно и качественно выражаются в ПДК, ПДУ, ПДВ, ПДС и ПДО. В энергетическом отношении состояние ПТС «П.С.–В.О.–Н» определяется балансовым состоянием свободной энергии (E_{cs6}), связной энергии (E_{cs3}) и полной энергии (E_{non}) поступающей в систему, выражение 4.2 [46 – 50].

$$E_{non} = E_{ce6} + E_{ce3} \left[L^5 T^4 \right] \tag{4.2}$$

Направленность протекающих процессов в рассматриваемой системе формируется процессами функционального развития, которые зависят от роста полезной мощности P для определенных периодов времени в настоящем t_0 и будущем t, t^2 , t^3 и т.д. Для каждого периода фиксируется: вклад в рост P за t, вклад в скорость роста P за t^2 , вклад в ускорение роста P за t^3 . Этот процесс можно представить в виде ряда разложений величин P(t) по степеням:

$$P(t) = P_0 + P_1 t + P_2 t^2 + P_3 t^3 + \dots [t^5 T^{-5}]$$
(4.3)

где P_0 – негативная величина полезной мощности;

 P_1 – рост полезной мощности;

 P_2 – скорость роста полезной мощности;

 P_3 – ускорение роста полезной мощности.

За ростом полезной мощности стоит рост эффективности f(t) использования полной мощности N_{non} , которой обладает система. Рост эффективности использования N_{non} полно представляется рядом разложения:

$$f(t) = f_0 + f_1 t + f_2 t^2 + f_3 t^3 + \cdots$$
(4.4)

где f_0 — негативная эффективность использования N_{non} в t_0 , f_1 — эффективность использования для t_1 , далее f_2 для t_2 , f_3 для t_3 .

Эффективность использования N_{non} для t_1 , t_2 , t_3 обуславливает вклад в рост P для t_1 , скорость для t_2 и вклад в рост ускорения P для t_3 . Величина P является мерой производительности труда в производстве рассматриваемой системе, которая зависит от совершенства используемых конструктивных решений и технологий использования, к примеру, водных ресурсов.

Таким образом можно отметить, что ЭУР в рассматриваемых ПТС «П.С.–В.О.–Н» в обобщенном понимании зависит от темпов роста эффективности использования N_{non} и не убывающих темпов роста P:

$$P + P_1 t + P_2 t^2 + P_3 t^3 + \dots \ge 0[L^5 T^{-5}] \tag{4.5}$$

и сохранения убывающего изменения мощности потерь (G):

$$G_0 + G_1 t + G_2 t^2 + G^3 t_3 + \dots < 0 (4.6)$$

На основе анализа выражения 4.4 - 4.7 по использованию N_{non} и неубывающих темпов роста P (4.5) и сохранения убывающего изменения G (4.6) можно сделать вывод, что обеспечения ЭУР в рассматриваемых ПТС «П.С.-В.О.-Н» возможно, если рассматривать использование водных ресурсов как процесс направленный на изменение направления и скорости движения потоков E_{cg6} , обуславливающие P в пространстве и времени. Эти изменения могут быть достигнуты за счет реализации более совершенных технологий и конструктивных решений, используемых в технологиях по использованию водных ресурсов. Уровень совершенства технологий И конструктивных решений выражается обобщенным коэффициентом полезного действия (КПД) $\eta_{o\delta} = \frac{E_{co\delta}}{E_{nos}}$ или P/N_{nos} в рассматриваемой системе. Так, для ПТС «П.С.-В.О.-Н» на оросительных системах, где намечается строительство МГЭС, зависимости от периода года $\eta_{o \delta} = 0.96 - 0.97$

Системные изменения в зонах влияния ПТС «П.С.-В.О.-Н» и опосредованно в пределах оросительной системы и бассейновой геосистемы связаны с процессами водопользования на МГЭС, что собственно и определяет тенденцию процессов взаимодействия «В.О.» с окружающей средой и Населением. Ожидаемые системные изменения, как было установлено результатами исследований, наиболее четко проявляются в ограниченных пространствах, которые были нами определены как зоны влияния.

4.2 Системный мониторинг экологической безопасности в зонах влияния водохозяйственных объектов

Практическое использование водных ресурсов в сельскохозяйственном производстве и для выработки электрической энергии на МГЭС, связано с созданием природно-технической системы «П.С.-В.О.-Н» [5, 10]. В этой системе «П.С.» и «Н» рассматривается в пространственных пределах зон влияния «В.О.», под которым понимается необходимый комплекс гидротехнических сооружений (КГТС), МГЭС и вспомогательных зданий. Создаваемые ПТС «П.С.-В.О.-Н» функционируют в пространственных пределах локальных бассейновых геосистем, в пределах которых действуют оросительные системы.

Системный механизм, действующий в пространственных пределах рассматриваемых бассейновых геосистем, как и в создаваемых ПТС «П.С.-В.О.-Н», обеспечивает одновременное изменение и сохранение поступающих потоков вещества, энергии и информации путем сохранения направления изменений в этих потоках. Следовательно, можно отметить, что системный механизм действует по принципу — «Все изменяется и остается неизменным», в котором сосредоточена вся бесконечность и мощность пространства — времени, представляющая собой многомерный поток. Для рассматриваемых ПТС «П.С.-В.О.-Н», связанных с использованием водных ресурсов, многомерные потоки представляют собой потоки вещества (поверхностный и подземный сток воды, растворенные и нерастворенные вещества и горные породы и т.п.), энергии (лучистая энергия Солнца, нефтепродукты, газ и др.), которые преобразуются под воздействием естественных процессов и объектами хозяйственной деятельности [11, 14].

Системный механизм, управляемый извне, обеспечивает сохранение эволюционного развития естественных процессов в пределах локальных бассейновых геосистем, связанных с жизнедеятельностью биотических, абиотических компонентов и проживающим населением, а через развитие процессов взаимосвязи, взаимодействия и взаимоотношений — между компонентами сохранение целостности рассматриваемых бассейновых геосистем. Функциональная работа такого системного механизма обеспечивается пространственновременным движением потоков энергии, вещества, информации, которые потребляются и при этом производят активные и пассивные потоки, включая потоки свободной E_{cgo} и связной энергии E_{cgo} , обуславливающие собой потоки полезной мощности (P) и мощности потерь (G) в соответствии с фундаментальным законом сохранения мощности [72, 73]:

Управление системного механизма в пределах бассейновой геосистемы в естественных условиях взаимосвязи, взаимодействия и взаимоотношения природных (биотических, абиотических) компонентов между собой осуществляется в соответствии с действующим принципом сохранения развития, обуславливающие собой необратимое, закономерное и направленное изменение, в результате которого возникает новое качественное состояние с более низким уровнем энтропии. Важную характеристику процессов «Развития» в рассматриваемых системах составляет время (t), которое определяет направленность «Развития».

Создаваемые новые ПТС «П.С.-В.О.-Н» по использованию водных ресурсов вносят определенные изменения в естественные процессы взаимосвязи, взаимодействия и взаимоотношения природных компонентов, жизнедеятельности населения и соответственно в действующий системный механизм. Вносимые изменения «В.О.» проявляются в зонах влияния, границы которых в природных средах определяются специальными комплексными исследованиями на стадии проектирования [5]. Для оценки уровня вносимых изменений в естественные процессы преобразования потоков энергии, вещества и направления тенденции их развития в зонах влияния «В.О.» возникает необходимость в проведении экологического

мониторинга, включающего в себя совокупность современных методик и способов получения своевременной и достоверной информации о состоянии и тенденции изменений, протекающих в природных средах. Совокупность методик и способов получения информации о состоянии и тенденции протекающих изменений в природных средах в зонах влияния «Объекта деятельности», действующего в пространственных пределах бассейновой геосистемы, обуславливает собой определенную технологию комплексного системного экологического мониторинга (ТСКЭМ). Как показывает практика в Северо-Кавказском регионе РФ, в настоящее время ТСКЭМ для строящихся и эксплуатируемых «В.О.» не в полной мере отвечает современным экологическим требованиям и требует дальнейшего совершенствования в соответствии с наиболее перспективными методологическими подходами и информационно-аналитическими системами мониторинга.

В существующих реальных экономических условиях совершенствование технологии системного мониторинга в зонах влияния «В.О.» на бассейновом и региональном уровнях должно идти по пути создания современной комплексной (объединенной) системы наблюдения за состоянием и тенденции протекающих изменений в природных средах и источниками их загрязнения на базе существующих территориальных служб Росгидромета, Росприроднадзора, Ростехнадзора и Роспотребнадзора и других природоохранных служб.

В основе такой системной технологии комплексного экологического мониторинга должен быть единый организационный, методологический и метрологический подход, позволяющий создать механизм взаимодействия ведомственных природоохранных служб с локальной (объектной) системой мониторинга состояния природных сред в зоне влияния рассматриваемого «В.О.» в период его строительства и дальнейшей эксплуатации. Результаты локальной системы мониторинга в зонах влияния «В.О.» должны дополнять и детализировать данные мониторинговых наблюдений территориальных служб государственного мониторинга [116–117].

На примере локальных бассейновых геосистем Ставропольского края система мониторинга в зонах влияния КГТС МГЭС на оросительных системах дополняющими детализирующими данными к организованной системе государственного мониторинга поверхностных и подземных вод на территории Ставропольского края явились следующие виды мониторинга: эколого-геохимический, гидробиологический, санитарно-химический, бактериологический и паразитологический, почвенный, геоботанический и зоологический, экзогенных геологических процессов, физических негативных воздействий (радиационного, шумового, электромагнитных полей) и мониторинг здоровья населения, проживающего в этих зонах влияния. Количественные и качественные показатели дополняющих и детализирующих видов мониторинга определялись в соответствии с исходным состоянием в природных средах

зон влияния «В.О.» [2]. Для КГТС МГЭС на оросительных системах, исходное экологическое состояние характеризуется: климатом, геоморфологией и гидрографией, геологическим строением и полезными ископаемыми, гидрологическими процессами и защищенностью подземных вод, инженерно-геологическими условиями (включая экзогенные процессы), почвенным и растительным покровом, животным миром, уровнем ландшафтной организации территории, особо охраняемыми территориями и рекреационными ресурсами, экономическим потенциалом и демографической ситуацией, техногенными источниками загрязнения природных сред.

Дополняющие и детализирующие виды мониторинга в зонах влияния КГТС МГЭС на оросительных системах по своей значимости и достоверности в оценке состояния и определении тенденций происходящих изменений в природных средах различны, и поэтому рассматривались в единой системе действующего государственного мониторинга.

В технологической системе комплексного экологического мониторинга зон влияния «В.О.» — КГТС МГЭС вошли: организация наблюдательной сети, комплекс режимных наблюдений за состоянием поверхностных и подземных вод, инженерно-геологические и инженерно-экологические наблюдения за состоянием жизнеобеспечивающих сред, создание информационной системы мониторинга и системы принятия решений.

Согласно современным природоохранным требованиям, создаваемая ТСКЭМ отвечала следующим принципиальным положениям:

- получение необходимой, достоверной и сопоставимой информации о состоянии и тенденции протекающих изменений в рассматриваемом пространстве и времени в природных средах под воздействием рассматриваемого «Объекта деятельности»;
- осуществление наблюдений как по общим показателям в природных средах, так и по специфическим показателям в период выполнения строительных работ – шум, загрязнение воздуха, водных объектов работающими механизмами, деградация биоценозов, и др.;
- ТСКЭМ для действующих и строящихся водохозяйственных объектов по использованию водных ресурсов основной целью предусматривает обеспечение экологической безопасности в зонах влияния данных объектов. Но, как показывает практика, экологическая безопасность в определенной степени зависит от технического состояния эксплуатируемых гидротехнических сооружений, которое определяется соответствующими видами безопасности: гидрологической конструктивной, гидравлической, фильтрационной (рисунок 4.2). Для своевременной и достоверной информации о техническом состоянии гидротехнических сооружений целесообразным является использование современных автоматизированных информационных систем с применением технологии открытых систем по ГОСТ 28906.

На основе результатов проводимых экологических мониторингов в зонах влияния ВО действующих в пространственных пределах бассейновых геосистем рек Кубани, Терека, Восточного и Западного Маныча можно сделать обобщающий вывод о возможной дифференциации проводимых исследований по экологическому мониторингу. На основе результатов мониторинговых исследований на Северном Кавказе бассейновых геосистем рек Кубани, Терека, Нижнего Дона, Восточного и Западного Маныча [13 – 16] дифференциацию экологического мониторинга рекомендуется выполнять по природным средам в установленных зонах влияния «В.О.». Исходя из необходимости обеспечения экологической безопасности для населения проживающего в зонах влияния «ВО», к важным сферам следует отнести социальные условия жизнедеятельности данного населения (рисунок 4.3).

Исходя из системного механизма управления извне по обеспечению сохранения развития рассматриваемой системы и соответственно через развитие обеспечения своего сохранения, экологическое состояние в пространственных пределах зон влияния «В.О.» обуславливается пространственно-временными движущимися потоками вещества, энергии, информации. Движение этих потоков происходит как в результате естественных процессов взаимосвязи, взаимодействия и взаимоотношения между природными биотическими и абиотическими компонентами, так и неестественными процессами, связанными с «В.О.», действующего в пространственных пределах бассейновой геосистемы, где расположены оросительные системы.

Для количественной и качественной оценки ожидаемых изменений в движении естественных потоков вещества, энергии и информации в природных средах под воздействием «В.О.» целесообразно в проводимом экологическом мониторинге выделить отдельные виды мониторинговых исследований (рисунок 4.3). Так, экологический мониторинг верхних слоев литосферы включает в себя такие виды мониторинговых исследований, на результатах которых определяется динамика происходящих изменений в геологической среде, связанных с активизацией экзогенных процессов, протекающих в форме механического и физикохимического взаимодействия с гидросферой, атмосферой. Как показывают результаты проводимых мониторинговых исследований на участках бассейновых геосистем рек Егорлык, Кума, Восточный и Западный Маныч, активизация экзогенных процессов связана с изменением уровня грунтовых вод в геологической среде оснований действующих гидротехнических сооружений. Для определения динамики изменений уровня, химического состава и характера движения грунтовых вод необходимо устройство наблюдательных скважин на глубиной до 30 м. Следует отметить, что важным элементом в данных мониторинговых исследованиях верхних слоев литосферы является визуальные и инструментальные обследования в зонах влияния «В.О.», в виде МГЭС.

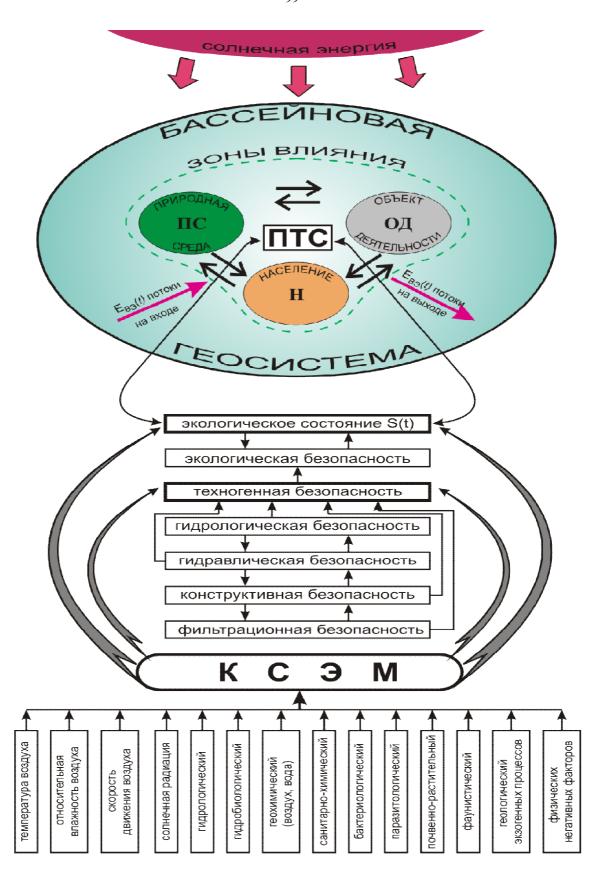


Рисунок 4.2 – Схема технологии системного комплексного мониторинга в зонах влияния «Водохозяйственных объектов» по использованию водных ресурсов на МГЭС оросительных систем Ставрополья

Почвенный покров и подстилающие породы, как отдельная природная среда в зонах влияния «В.О.», непосредственно взаимодействует с атмосферой, населением и опосредованно с гидросферой и верхними слоями литосферы. Для оценки динамики изменений и тенденций их развития в почвенном покрове под воздействием «В.О.» необходимо проводить такие виды экологического мониторинга, как почвенно-растительный, фаунистический, радиационный, акустических и электромагнитных взаимодействий, а также водной и ветровой эрозии почвенного покрова (рисунок 4.4). К наиболее негативным последствиям от воздействия «В.О.» относятся изъятие из естественного и сельскохозяйственного оборота земель под размещение водохозяйственных объектов, активизация водной и ветровой эрозии. Индикаторным показателем негативных изменений в почвенном покрове являются изменения в составе растительного покрова и, как следствие, изменения в популяциях животного мира [87].

Хозяйственная деятельность, связанная c использованием водных ресурсов, непосредственно взаимосвязана гидросферой, которая представляет собой сформировавшуюся естественную и искусственную гидрографическую сеть на водосборных территориях локальных бассейновых геосистем. Практическое повторное использование водных ресурсов связано с последующим отбором из водного объекта расчетных расходов воды в системы водоснабжения, орошения, выработкой электрической энергии на МГЭС привносит определенные изменения в естественные процессы как формирования стока, так и другие природные среды – атмосферу, верхние слои литосферы, почвенный покров с подстилающими породами, а через них в социальные условия жизни населения.

Поэтому экологический мониторинг водных объектов является наиболее важным в оценке экологического состояния на рассматриваемых локальных бассейновых геосистемах в целом. Основными частями экологического мониторинга гидросферы являются – гидрологический, гидробиологический и ихтиологический, гидрохимический, русловых процессов и переформирования берегов, почвенно-растительной прирусловой поймы, бактериологический, паразитологический и фаунистический прибрежных зон (рисунок 4.3).

Атмосфера, как важная природная среда, взаимосвязана непосредственно и опосредованно со всеми природными средами, в пространственных пределах которой формируются основные параметры микроклимата в зонах влияния «В.О.» и бассейновой геосистемы в целом. Для оценки изменений в состоянии приземных слоев атмосферы в зонах влияния «В.О.» в период строительства требует проведения мониторинговые наблюдения за температурой, относительной влажностью воздуха, скоростью движения воздушных масс над водной поверхностью, локальной запыленностью и загазованностью в период строительства КГТС МГЭС, геохимической и санитарно-химической, а также радиационным балансом солнечной радиации (рисунок4.3).

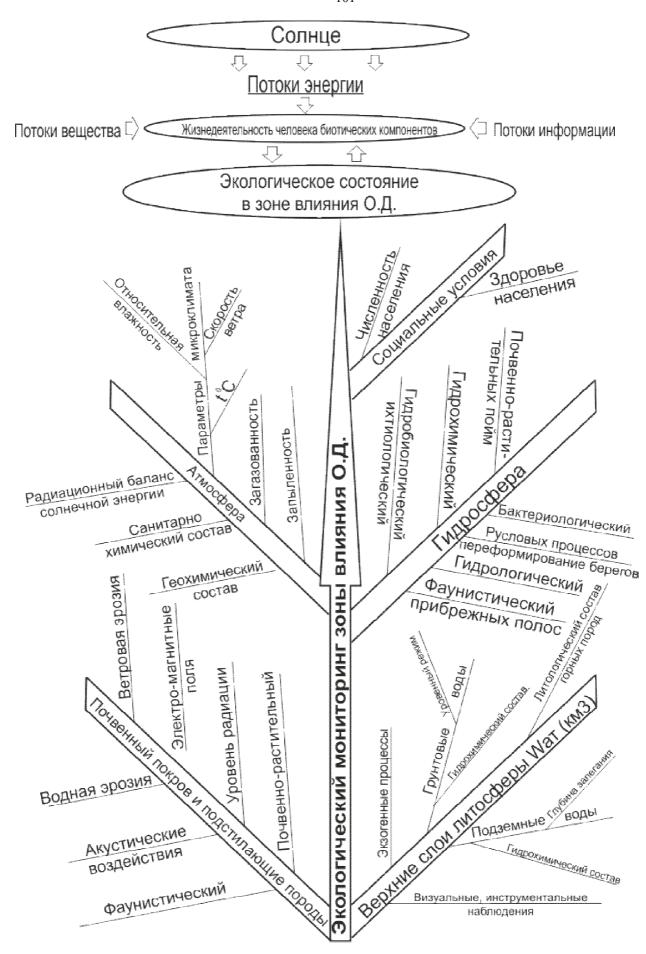


Рисунок 4.3 – Классификационная схема экологического мониторинга

Исследованиями установлено, что интегральным показателем экологического состояния в рассматриваемых пространственных пределах зон влияния «В.О.» является социальные условия населения, в которых доминирующим показателем является здоровье населения [13]. Мониторинговые исследования в социальной сфере природной среды включают в себя следующие части экологического мониторинга – здоровье населения, численность населения, занятость населения в отраслях хозяйственной деятельности, а также определенные социологические исследования (рисунок 4.3).

4.3 Прогноз изменений экологического состояния в зонах влияния КГТС МГЭС

В общем балансе природных и техногенных ландшафтов в районах строительства МГЭС техногенные составляют 37 % (населенные пункты, пашни, автодороги). После ввода в эксплуатацию МГЭС, отведенные под строительство, рекультивируются, и на строительных площадках восстанавливается луговой, лугово-болотный, лесной или степной ландшафт.

Наибольшее беспокойство животным и птицам наносит работающая техника во время механизированных работ, строительства подъездных дорог, прокладки каналов. Наибольший ущерб можно нанести животным и птицам в период размножения и выращивания молоди. После ухода строительной техники животные и птицы возвращаются на ранее облюбованные и обжитые места. Во время маршрутных обследований речных долин и водораздельных пространств, находили гнезда птиц и следы копытных в непосредственной близости от канала и строительных площадок.

При строительных работах неизбежно происходит нарушение природных ландшафтах, и поэтому по завершении работ нами было рекомендовано проведение рекультивационных работ. Техническая и биологическая рекультивация наземных природных ландшафтов следует проводить по следующему плану:

- 1. Перед началом работ по трассе подводящих и отводящих каналов и на строительных площадках МГЭС плодородный слой почвы снимается на глубину 50 см и укладывается в бурты вдоль трассы канала.
- 2. После завершения работ поверхность строительной площадки планируется, на площадку возвращается слой плодородной почвы около 40 см (планируемое оседание почвы).
- 3. Биологический этап рекультивации сводится к подсеву луговых трав, так как в луговой почве на протяжении нескольких лет сохраняются семена злаков и лугово-степного разнотравья.

Согласно СП 11-102-97 «Инженерно-экологические изыскания для строительства» (п. 4.90), стационарные экологические наблюдения.

Организация стационарных наблюдений (локального экологического мониторинга) должна предусматривать четыре последовательных этапа:

- -проведение предварительного обследования с целью установления основных компонентов природной среды, нуждающихся в мониторинге, определение системы наблюдаемых показателей, измерение фоновых значений;
- создание постоянно действующей системы экологического мониторинга, ее
 оборудование и функциональное обеспечение, организация взаимодействия с аналогичными системами других ведомств;
- проведение стационарных наблюдений с целью определения тенденций изменения показателей экологического состояния в природных средах;
- отслеживание и моделирование экологической ситуации, составление краткосрочных и долгосрочных прогнозов и выдача рекомендаций.

Программа мониторинга разрабатывается совместно со специально уполномоченными территориальными природоохранными органами и другими заинтересованными организациями и согласовывается с территориальными органами исполнительной власти.

Программой мониторинга устанавливаются:

- виды мониторинга (инженерно-геологический, гидрогеологический и гидрологический, мониторинг атмосферного воздуха, почвенно-геохимический, фитомониторинг, мониторинг обитателей наземной и водной среды);
 - перечень наблюдаемых параметров;
 - расположение пунктов наблюдения в пространстве;
 - методика проведения всех видов наблюдений;
 - частота, временной режим и продолжительность наблюдений;
 - нормативно-техническое и метрологическое обеспечение наблюдений.

Природоохранная деятельность становится основным производственным этапом всех процессов хозяйственной деятельности, в той или иной мере оказывающих воздействие на окружающую природную среду. Для оценки состояния экосистем в процессе строительства и эксплуатации газопровода должен осуществляться регулярный геоэкологический мониторинг, под которым понимается система режимных наблюдений в пространстве и во времени, позволяющая оценивать динамику техногенного изменения природной среды и контролировать ее состояние.

Для успешного обеспечения безаварийного производства необходима тесная связь системы экологического мониторинга с соответствующими комплексами мониторинга производственных процессов в процессе транспортировки газа к потребителю. По результатам наблюдений может быть дана оценка текущего состояния ОС и прогнозная оценка воздействия объекта на окружающую среду и недра. Это позволит предусмотреть природоохранные мероприятия для предупреждения неблагоприятных экологических ситуаций и откорректировать периодичность контроля состояния экосистем.

Описываемая территория характеризуется относительно простыми гидрогеологическими, но достаточно сложными инженерно-геологическими и горнотехнологическими условиями, что влечет за собой необходимость наблюдений за множеством компонентов окружающей среды (атмосфера, почвы, поверхностные и подземные воды, растительность, массивы горных пород).

Целью системного комплексного экологического мониторинга (СКЭМ) в районе строительства малых ГЭС является улучшение экологического состояния, как фактора экологической безопасности в биогенно-техногенных и природных ландшафтов, сохранение их продуктивности и биоразнообразия, минимизация уровня загрязнения атмосферы и водных объектов, исключение возможности ухудшения здоровья населения, использующего данную территорию для хозяйственных целей.

В СКЭМ рекомендуется включать следующие виды:

- 1. Эколого-геохимический:
 - атмохимические наблюдения (снеговая и летняя атмохимическая съемка);
 - гидрохимический на стационарных гидропостах и створах;
 - гидрогеохимический по сети наблюдательных скважин, колодцев, родников;
 - литогеохимический (почвенная съемка и опробование донных отложений);
- 2. Биоценотический (мониторинг состояния почвы, флоры и фауны).
- 3. Мониторинг экзогенных геологических процессов.

СКЭМ состоит из сети постоянных пунктов, на которых должны производиться наблюдения за загрязнением атмосферы, водных объектов, почвенного покрова, и периодических экспедиционных исследований на отдельных точках, створах, площадках для определения влияния техногенеза на окружающую среду и здоровье человека, для оценки эффективности проводимых природоохранных мероприятий.

Программа действий СКЭМ рекомендуется осуществлять в следующей последовательности:

1. Сбор информации в организациях, ведущих региональный и локальный мониторинг воздушного бассейна и водных систем, биоценозов и источников загрязнения.

- 2. Создание единого банка данных, связанного с ГИС. Разработка электронной основы карты экологического мониторинга на исследуемой территории.
- 3. Обобщение собранной информации, анализ существующей экологической ситуации. Районирование района работ по уровню техногенной нагрузки и масштабам современного загрязнения окружающей среды.
- 4. Обоснование необходимого числа пунктов комплексных наблюдений. Методическое и лабораторное обеспечение комплексного экологического мониторинга.
- 5. Расчет аэрального поступления загрязняющих веществ на исследуемую территорию в условиях регионального и локального загрязнения атмосферы. Построение электронных карт распределения твердофазных и аэрозольных выпадений из атмосферы.
- 6. Расчет поступления загрязняющих веществ с техногенными водными потоками. Определение величины поверхностного стока в природных условиях и при проведении хозяйственных мероприятий.
- 7. Определение уровня химического загрязнения наземных и водных ландшафтов в районе строительства газопровода. Визуализация уровня загрязнения водных систем и наземных ландшафтов на электронных картах.
- 8. Определение экологической емкости экосистем (способности экосистем к самоочищению), картирование наиболее уязвимых участков.
- 9. Определение масштабов негативных проявлений экзогенных геологических процессов (воздушная и водная эрозия, оползни, просадки, подтопление, засоление, переотложение смытого материала в русле реки). Нанесение участков развития экзогенных геологических процессов на электронную карту.
- 10. Выявление тенденции уменьшения (увеличения, сохранения) биоразнообразия на исследуемой территории.
- 11. Информирование административных структур, природоохранных организаций и населения о результатах экологического мониторинга.

4.4 Выводы по четвертой главе

На основе системного энерго-энтропийного подхода в исследовании процессов взаимодействия водохозяйственных объектов, в виде КГТС МГЭС на оросительных системах, с природными средами разработаны теоретические основы оценки взаимодействия водохозяйственного объекта в составе ПТС «П.С.-В.О.-Н». Для ПТС «П.С.-В.О.-Н» в пределах

оросительных систем на участках строительства КГТС МГЭС системные изменения в природных средах определялись обобщенным коэффициентом $\eta_{oбиц} = E_{cs6}/E_{non} = 0,96$ - 0,97 доминирования природных процессов над техногенными изменениями, что и обуславливает экологическую безопасность.

На основе результатов исследований оценки воздействия водохозяйственных объектов на природные среды и проживающего населения, в зонах влияния, разработана технологическая и классификационная система комплексного экологического мониторинга, позволяющего получение достоверной информации о экологическом состоянии в природных средах, как фактора экологической безопасности.

Для обеспечения экологической безопасности в зонах влияния водохозяйственных объектов на оросительных системах, разработаны рекомендации по оценке прогноза изменений экологического состояния на участках размещения КГТС МГЭС.

ГЛАВА 5 СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ И ЭКОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ СТРОИТЕЛЬСТВА КГТС МГЭС НА ОРОСИТЕЛЬНЫХ СИСТЕМАХ СТАВРОПОЛЬСКОГО КРАЯ

5.1 Социально-экономические условия в зонах влияния КГТС МГЭС

На основе результатов исследований были определены зоны влияния КГТС МГЭМ (I, II и III) в составе ПТС «П.С.-В.О.-Н», где зона влияния (III) определяется пространственными границами муниципального района.

5.1.1 Изобильненский муниципальный район

На территории Изобильненского муниципального района планируется размещение двух малых ГЭС на перепаде №2 и №3 реки Егорлык (рисунки 3.3 - 3.5).

Территория (кв. км)	1935
Расстояние до краевого центра (км)	56
Дата образования	1924 г.
Население (оценка на 1 января 2009 г.), тыс. человек в т.ч. городское сельское	100.2 58.5 41.7

Плотность населения (на 1 января 2015 г., человек на 1 кв. км)	51.8	Наиболее крупные поселения (число жителей - оценка на 1 января		
Муниципальные образования		2015 г.), тыс. человек:		
в том числе наделённые статусом:		г. Изобильный	38.7	
муниципальный район		р.п. Солнечнодольск	12.3	
городское поселение ¹	3	р.п. Рыздвяный	7.5	
сельское поселение	12	ст. Новотроицкая	7.5	
Число сельских населенных пунктов	22	с. Московское	5.1	
		с. Птичье	4.7	
		с. Тищенское	3.2	

¹ город Изобильный и посёлки городского типа Рыздвяный и Солнечнодольск

Таблица 5.1 – Земельная площадь (по данным Всероссийской сельскохозяйственной переписи на 1 июля 2016 г.)

	Общая	в том числе	Из общей площади		
	земельная площадь, га	сельскохозяйственные угодья	из них пашня	сельскохозяйственных угодий фактически используется, %	
Хозяйства всех категорий	151497	132172	11601	92.2	
в том числе:					
сельскохозяйствен ные организации	130277	112500	10125 5	92.6	
хозяйства населения	7086	5648	3586	89.4	
крестьянские (фермерские) хозяйства и индивидуальные предприниматели	14134	14024	11171	90.0	

Район расположен в зерново-животноводческой зоне Ставропольского края. Сельскохозяйственные угодья в хозяйствах всех категорий, по данным Всероссийской сельскохозяйственной переписи на 1 июля 2016 г., составили 132,2 тыс. га, или 2,0 % всех земель края, пашня 116,0 тыс. га, или 1,7 %. Сельское хозяйство района специализируется на выращивании продукции растениеводства. Ведущая роль в животноводстве принадлежит птицеводству, свиноводству и молочному скотоводству. Район производит более 3 % общекраевого объема молока, 3 % яиц, около 3 % мяса.

Темп роста объема отгруженных товаров собственного производства, выполненных работ и услуг собственными силами по промышленным видам деятельности. Экономику района представляют обрабатывающие предприятия, производящие, в основном, продукты питания – масло растительное, сахар-песок, колбасные изделия, крупу.

Инвестиции в основной капитал в 2016 г. составили более 1151,3 млн. рублей. В их объеме 63,8 % занимают собственные средства, 36,2 % – привлеченные средства.

Оборот розничной торговли составил 3632,2 млн. руб., или 105,7 % (в сопоставимых ценах) к 2015 г. По уровню оборота розничной торговли на душу населения среди муниципальных районов края район занимает 1-е место.

5.1.2 Буденовский муниципальный район

На территории Буденновского муниципального района планируется размещение двух малых ГЭС на Покойненской плотине и Покойненских перепадах (рисунок 3.6).

Таблица 5.2 – Земельная площадь (по данным Всероссийской сельскохозяйственной переписи на 1 июля 2016 г.)

	Общая	в том числе		Из эбугэй плангали
	земельная площадь, га	сельскох озяйствен ные угодья	из них пашня	Из общей площади сельскохозяйственных угодий фактически используется, %
Хозяйства всех категорий	248388	233454	204392	97.4
в том числе:				
сельскохозяйственные организации	218822	204909	179325	98.2
хозяйства населения	3673	2812	1030	64.2
крестьянские (фермерские) хозяйства и индивидуальные предприниматели	25893	25733	24037	94.8

Район расположен в зерново-овцеводческой зоне Ставропольского края. Сельскохозяйственные угодья в хозяйствах всех категорий, по данным Всероссийской сельскохозяйственной переписи на 1 июля 2016 г., составили 233,5 тыс. га, или 3,5 % всех земель края, пашня 204,4 тыс. га, или 3,1 %. Сельское хозяйство района специализируется на выращивании зерна и винограда. В 2017 г. собрано 493,4 тыс. тонн зерновых культур (5,7 % от

общекраевого объема), винограда – 9,4 тыс. тонн (34,7 %). Ведущая роль в животноводстве принадлежит мясному и молочному скотоводству. Район производит более 2 % общекраевого объема мяса, 3,2 % молока.

Темп роста объема отгруженных товаров собственного производства, выполненных работ и услуг собственными силами по промышленным видам деятельности (без субъектов малого предпринимательства) в 2017 году составил 139,4 %. Экономику района представляют обрабатывающие предприятия, производящие цельномолочную продукцию, мясо, хлеб и хлебобулочные изделия, винно-коньячную продукцию.

Инвестиции в основной капитал составили 885,9 млн. рублей. В их объеме 53,1 % занимают собственные средства, 46,9 % привлеченные средства. В 2017 г. введено в действие жилых домов общей площадью 28,9 тыс. м², что в 1,7 раза больше, чем в 2015 году.

5.1.3 Нефтекумский муниципальный район

Территория (кв. км)

3797

На территории Нефтекумского района планируется размещение одной малой ГЭС на 111км Терско-Кумского канала (Горько-Балковский быстроток).

	публика Эстан	Расстояние до краевого центра (км) Дата образования Население (оценка января 2009 г.), человек в т.ч. городское сельское	353 1963 г. на 1 тыс. 68.5 34.1 34.4
Плотность населения (на 1 января 200 г., человек на 1 кв. км)	18.0	Наиболее крупные пос (число жителей – оце	
Муниципальные образования	13	2009 г.), тыс. человек:	спка па т ливаря
в том числе наделённые статусом:		г. Нефтекумск	26.4
муниципальный район	1	р.п. Затеречный	7.7
городское поселение	2	с. Ачикулак	6.6
сельское поселение	10	с. Каясула	5.1
Число сельских населенных пунктов	24	с. Кара-Тюбе	3.1
		а. Махмуд-Мектеб	3.1
		а. Тукуй-Мектеб	2.8
		а.Новкус-Артезиан	2.4
		а. Озек-Суат	2.0

¹город Нефтекумск и посёлок городского типа Затеречный

Таблица 5.3 – Земельная площадь (по данным Всероссийской сельскохозяйственной переписи на 1 июля 2016 г.)

	Общая	в том ч	исле	Из общей площади
	земельная площадь, га	сельскохо зяйственн ые угодья	из них пашня	сельскохозяйственных угодий фактически используется, %
Хозяйства всех		•		
категорий	282435	253344	88789	76.0
в том числе:				
сельскохозяйственные				
организации	249406	221048	82714	79.0
хозяйства населения	8294	7561	713	91.9
крестьянские (фермерские) хозяйства и индивидуальные				
предприниматели	24735	24735	5362	44.7

Район расположен в овцеводческо-зерновой зоне Ставропольского края. Сельскохозяйственные угодья в хозяйствах всех категорий, по данным Всероссийской сельскохозяйственной переписи на 1 июля 2016 г., составили 253,3 тыс. га, или 3,8 % всех земель края, пашня 88,8 тыс. га, или 1,3 %. Сельское хозяйство района специализируется на выращивании зерна и овощей. В 2017 г. собрано 141,4 тыс. тонн зерновых культур (1,6 % от общекраевого объема), овощей – 19,1 тыс. тонн (10,2 %). Ведущая роль в животноводстве принадлежит овцеводству, мясному и молочному скотоводству. Район производит около 20 % общекраевого объема шерсти, 4,2 % мяса, 5,3 % молока.

Инвестиции в основной капитал составили1501,0 млн. рублей. В их объеме 41,3% занимают собственные средства, 58,7 % – привлеченные средства. В 2017 г. введено в действие жилых домов общей площадью 2,5 тыс. м², что почти на четверть меньше, чем в 2015 году.

Сальдированный финансовый результат (прибыль минус убыток) деятельности организаций района составил 201,9 млн. рублей.

5.2 Эколого-экономическая эффективность планируемых к строительству МГЭС

5.2.1 Коммерческая эффективность строительства МГЭС

*Исходные положения принятые в расчетах эффективности*К малым ГЭС относят гидроэлектростанции мощностью менее 25 МВт.

Предполагаемая продолжительность строительства составляет менее 1 года.

Стоимость строительства по данным на 1 квартал 2017 года приведена к 1 кварталу 2016 года по корректирующим коэффициентам для СМР – 1,497; для энергетического оборудования – 1,382.

Ежегодные издержки по эксплуатации МГЭС определялись в ценах I квартала 2017 года в расчете на 1 МВт. установленной мощности на основании данных станций-аналогов. В ежегодных издержках учтены следующие затраты:

- эксплуатационные расходы;
- платежи налогов в бюджеты разных уровней.

В экономических расчетах стоимость капитальных вложений и ежегодных издержек принимались в базовых ценах I квартала 2017 года.

При учете амортизационных отношений, включенных в себестоимость электроэнергии и снижающих налоговую базу при исчислении налога на прибыль принято, что балансовая стоимость основных фондов на протяжении всего жизненного цикла инвестиционных вложений остается неизменной. Амортизационные отчисления учитывались линейным способом.

Нормативный срок службы основных сооружений МГЭС составляет 50 лет. Нормативный срок службы основного оборудования составляет 25-30 лет, но по опыту эксплуатации может быть увеличен до 50 лет. В этом случае ежегодные нормы амортизационных отчислений по всему комплексу сооружений для каждой МГЭС может быть принят равной 2%.

Налоги в расчетах выполнялись в соответствии с действующей на 1.01.2010 года системой налогообложения (таблица 5.4).

Таблица 5.4 – Виды налогов, учитываемых в расчетах

№ п/п	Виды налога	Норма налога, %
1.	Налог на добавочную стоимость (НДС)	18
2	Налог на прибыль	20
3	Налог на имущество	2,2
4	Водный налог	8,88 руб/МВт час
5	Единый социальный налог, в т.ч.	26
	- Пенсионный фонд РФ	20
	- Фонд социального страхования	2,9
	- Фонд обязательного медицинского страхования	3,1

При проведении расчетов цены на электроэнергию поставляемую для внутреннего использования и на оптовый рынок в ОЭС Юга России по нерегулируемым ценам принимались равной 1,325 руб/кВт ч с прогнозом темпа роста для оптимистичного сценария развития рынка 3%, а умеренного -2%.

Данные для расчетов представлены в таблице 5.5.

Таблица 5.5 – Исходные данные для расчета

	Капитальные вложения, млн.руб. (в пересчете на 2016 год)	Эксплуата- ционные издержки, тыс.руб. (в пересчете на 2016 год)	Среднегодовая выработки электроэнергии, млн. кВт	Установленная мощность, МВатт	Себестоимлость электроэнергии, руб./квт	Отпускная цена (тариф), руб./кВт ч
ГЭС №1	66,173	2576	10,0 (8,600)	3,5 (2,24)	0,44	1,325
ГЭС №2	74,246	2227	22,0 (14,045)	3,0 (1,8)	0,225	1,325
ГЭС №3	56,600	1610	7,7 (6,63)	1,5 (1,4)	0,36	1,325
ГЭС №4	56,070	1682,1	9,3 (8,075)	1,2 (1,4)	0,312	1,325
ГЭС №5	229,980	6400	48 (35,355)	10,3 (6,92)	0,285	1,325

Примечание: в скобках приведена мощность на генераторе.

Для определения коммерческой эффективности объектов рассчитывались следующие показатели: чистый приведенный доход (NPV), внутренняя норма доходности (IRR), дисконтированный срок окупаемости (ДРР) и индекс доходности (PI).

Нормы дисконта в расчетах принимались равной 12 %.

Расчеты производились в соответствии с требованиями Методических рекомендаций по оценке эффективности инвестиционных проектов (вторая редакция, утв. Министерством экономики РФ, Министерством финансов РФ, Государственным комитетом РФ по строительной, архитектурной и жилищной политики, № ВК 477 от 21.06.1999 г.).

При использовании оптимистического и умеренного сценария были получены следующие результаты приведенные в таблице 5.6.

Таблица 5.6 – Показатели коммерческой эффективности

Объект	<i>NPV</i> , (та оптим*.	ыс.руб.) умер*.	<i>PI</i> , оптим*.	умер*	IPR, %	Период окупаемости, лет
ГЭС№1	7377	3050,5	1,11	1,047	8,9	11,2
ГЭС№2	60165	45851	1,80	1,6	13,3	6,14
ГЭС№3	9290	2700	1,16	1,05	10,4	9,5
ГЭС№4	15630	8460	1,27	1,15	11,2	8,7
ГЭС№5	90297	58270	1,39	1,25	11,8	8,0

 $[*]O_{nmum}$ – оптимистический сценарий

 $[*] Y_{мер}$ – умеренный сценарий

Примечание: В данном случае, когда по долгосрочному инвестиционному проекту ($T_{\kappa \iota \eta}$ = 50 лет) ожидаемые денежные потоки отчетливо переменны (их нельзя аппроксимировать постоянным ожидаемым денежным потоком), но их данные таковы, что реальным приближением к действительности становится предложение о постоянном темпе их роста (α), то формула расчета NPV преобразуется в формулу Гордона:

$$NPV = \frac{CF}{r - \alpha} \tag{5.1}$$

где CF – чистый доход,

r — норма дисконтирования,

 α — темп роста денежного потока (α =2% для умеренного сценария, α =3% для оптимистического сценария).

Расчеты, приведенные в таблице 5.6, в соответствии со сценарным условием предлагаемые проблемы строительства и реконструкции малых ГЭС являются коммерчески эффективными по обоим сценариям.

Период расчетов (жизненный цикл) принимался равным 50 лет.

Доходы станции формируются в соответствии с мощностью и предполагаемой ценой производимой электроэнергии (среднемноголетней выработки электроэнергии) и учитывались без НДС.

В расчете учитывались налоги предусмотренные законодательством.

5.2.2 Бюджетная эффективность строительства МГЭС

Вследствие того, что строительство малых ГЭС в Ставропольском крае не предполагает использование бюджетных средств в качестве источника финансирования капитальных затрат, то отсутствуют связанные со строительством денежные потоки из бюджета.

К притокам средств для расчета бюджетной эффективности относим (таблица 5.1): налог на добавочную стоимость, налог на прибыль, налог на имущество, водный налог.

В связи с этим нам представляется возможным произвести расчет таких показателей эффективности: внутренняя норма бюджетной эффективности, индекс доходности, срок окупаемости.

В нашем случае основным показателем бюджетной эффективности будет чистый доход бюджета (ЧДб). Результаты расчета приведены в таблице 5.7.

Таблица 5.7 – Чистый доход бюджета (тыс. руб)

	ндс	Налог на прибыль	Налог на имущество	Водный налог	Чистый доход бюджета, тыс.руб.
ГЭС№1	2051	1130,2	1880	76,4	5137,6
ГЭС№2	3349,8	2836,2	1089	124,7	7399,7
ГЭС№3	1581,3	1032,8	1206	58,9	3879
ГЭС№4	1926	1397,4	1189	71,7	4584,1
ГЭС№5	8432,3	6756,4	2714	313,9	18216,6

Как видно из приведенных значений ЧДб, проекты малых ГЭС характеризуются высоким бюджетным эффектом.

5.2.3 Социально-экономическая и экологическая эффективность строительства MГЭС

Данная оценка позволяет проверить обоснованность проектов с точки зрения общества. Общественная эффективность учитывает затраты и результаты, связанные с результатами инвестиционных вложений, выходящие за пределы прямых финансовых интересов участников. Результаты расчетов приведены в таблице 5.8.

Таблица 5.8 – Экономические расчеты общественной эффективности

Показатели	ГЭС на р. Егорлык, перепад №3	ГЭС на р. Егорлык, перепад №2	ГЭС на Прикумском (Покойненском) перепаде	ГЭС на Покойненской плотине	ГЭС на Горько- Балковском быстротоке Терско-Кумского канала	Суммарно по пяти ГЭС, всего
Средняя годовая выработка ГЭС млн. кВт•ч	8,5	13,9	4,7	7,4	42,1	76,6
Замещение органического топлива, тыс. усл. т/год	1,7	2,78	0,94	1,48	8,42	15,32
Стоимость замещенного органического топлива в РФ, тыс. €/год	27,5	44,9	15,2	23,9	136,0	247,5
Сокращение выбросов парниковых газов, тыс. т/год	15,1	24,7	8, 4	13,2	74,8	127,8
Стоимость предотвращенных выбросов, тыс. €/год	168,4	275,4	93,2	146,6	834,2	1517,8

Для оценки общественной эффективности строительства и реконструкции малых ГЭС в Ставропольском крае учитываются косвенные производственные и экологические результаты. В данном случае это: замещение углеводородного и/или углеродного топлива (газ, уголь) и предотвращение выбросов парниковых газов (CO₂).

Произведенные в таблице расчеты показывают высокую общественную эффективность вложения инвестиций в строительство и реконструкцию малых ГЭС.

На основе результатов проведенных исследований по использованию гидроэнергетического потенциала на действующих ГТС оросительных систем Ставропольского края была доказана как экономическая, так и экологическая эффективность, с обеспечением экологической безопасности МГЭС в период их строительства и последующей их эксплуатации.

5.3 Выводы по пятой главе

На основе результатов анализа социально-экономических условий в зонах влияния МГЭС намечаемых к строительству в Изобильненском, Буденовском и Нефтекумском муниципальных районах определена их коммерческая, бюджетная и социальная эффективность.

Эколого-экономическая эффективность строительства МГЭС определяется земледелием использования органического топлива, что обеспечивает сокращение выбросов парниковых газов в атмосферу 127,8 тыс. тонн и соответственно улучшение экологического состояния в пространственных пределах локальных бассейновых геосистем рек Кубани, Терека, Западного и Восточного Маныча.

ЗАКЛЮЧЕНИЕ

В диссертационной работе дано решение актуальной задачи по разработке элементов по совершенствованию методологии ОВОС в зонах воздействия и функционирования водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н», как фактора по обеспечению экологической безопасности.

На основании проведенных теоретических и экспериментальных исследований можно сделать следующие выводы по работе:

- 1. Исходя из действующего принципа единства действий природы и проводимой хозяйственной деятельности по использованию водных ресурсов в сельскохозяйственном производстве на ООС Ставрополья результатами исследований экологической безопасности в зонах влияния «Водохозяйственных объектов» намечаемых к строительству была установлена необходимость в разработке элементов системного подхода оценки экологической по совершенствованию методологии ОВОС «В.О.» в составе ПТС «П.С.-В.О.-Н». На основе установленных видов воздействия на П.С.» В.О», намечаемых к строительству разработаны природоохранные мероприятия по снижению негативного воздействия при строительстве и эксплуатации
- 2. На основе результатов исследований разработаны элементы методики инженерноэкологических изысканий по оценке экологической безопасности на «В.О.» намечаемых к строительству на действующих ООС бассейновых геосистем рек Егорлык, Кума и Терско-Кумского канала.
- 3. Разработаны элементы методики оценки экологической безопасно по совершенствовании методологии OBOC «В.О.» намечаемых к строительству в составе ПТС «П.С-В.О.Н.» создаваемых в пределах действуют О.О.С.
- 4. Разработаны природоохранные мероприятия направленные на снижение негативного воздействия на «П.С» в зонах влияния «В.О» намечаемых к строительству.
- 5. Исследованиями процессов взаимодействия «В.О» с «П.С» характеризуемые привносом в окружающую среду и изъятием из окружающей среды установлены виды воздействия активное Іи ІІ и малоактивное ІІІ определяемое границами муниципальных районов.
- 6. Результаты исследований внедрены в Ставропольском крае в части экологоэкономического обоснования на строительство МГЭС на действующих О.О.С.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абакумов, В. А. Экологические модификации и критерии экологического нормирования // Л., Гидрометеоиздат, 1991. С. 18 40.
- 2. Азаров, Д. В., Семенова, Е. А., Сергина Н. М. Оценка экономической эффективности применения систем пылеулавливания с аппаратами ВЗП // Научные проблемы гуманитарных исследований. 2012. № 7. С. 229 234.
- 3. Алпатьев, А. М. Развитие, преобразование и охрана природной среды. Л., Наука, 1983. 240 с. Афанасьев, Ю. А. Мониторинг и методы контроля окружающей среды: Ч. 1 / Ю. А. Афанасьев, С. А. Фомин. М.: МНЭПУ, 1998. 468 с.
- 4. Афанасьев, Ю. А. Мониторинг и методы контроля окружающей среды: Ч. 2 / Ю. А. Афанасьев, С. А. Фомин. М.: МНЭПУ, 2001. 335 с.
- 5. Бондаренко, В. Л., Дьяченко, В. Б. Оценка экологического состояния бассейновой геосистемы в процессах использования водных ресурсов. // Проблемы региональной экологии. № 2, 2005. С.86– 92.
- 6. Бондаренко, В. Л., Дьяченко, В.Б., Гутенев, В. В., Федорян, А. В. Системный подход в оценке воздействия водохранилищ на окружающую среду. // Проблемы региональной экологии. № 5, 2006. С. 6–12.
- 7. Бондаренко, В. Л., Гутенев, В. В., Приваленко, В. В., Поляков, Е. С. Оценка воздействия на окружающую среду (ОВОС) при проектировании водохозяйственного комплекса Зеленчукской ГЭС. // Теоретическая и прикладная экология. № 1, 2007. С. 47–54.
- 8. Бондаренко, В. Л., Клюкович, З. А. Прогнозирование и методика оценки ущерба при чрезвычайных ситуациях для объектов народного хозяйства. Учебное пособие, Ростов-на-Дону, ООО «Тера», 2001. 80 с.
- 9. Бондаренко, В. Л., Дьяченко, В. Б. Теоретические основы оценки уровня безопасности водоподпорных гидротехнических сооружений. Водное хозяйство России, т.3, № 2, 2001. С. 159–162.
- 10. Бондаренко, В. Л. Природообустройство: территории бассейновых геосистем : учеб. пособие / под общ. ред. И.С. Румянцева. Ростов н/Д: Издательский центр «Март», 2010. 527 с.
- 11. Бондаренко, В. Л., Теоретические основы уровня безопасности водоподпорных гидротехнических сооружений. Водное хозяйство России, т. 3 / В. Л. Бондаренко, В. Б. Дьяченко— 2001... № 2.- С. 159-162.

- 12. Бондаренко, В. Л. Решение экологических проблем при проектировании гидротехнических сооружений (на примере бассейновой геосистемы Верхней Кубани) / В. Л. Бондаренко, В. В. Приваленко, А. В. Кувалкин, и др. Изд. ЮНЦ РАН, г. Ростов-на-Дону, 2009 г., 306 с.
- 13. Бондаренко, В. Л., Дьяченко, В. Б., Гутенев, В. В., Федорян, А. В. Энергоэнтропийный подход в эколого-экономическом обосновании при строительстве и реконструкции водохранилищных гидроузлов/ Экология урбанизированных территорий № 1; 2009, с. 6-10.
- 14. Бондаренко, В. Л., Приваленко, В. В., Кувалкин, А. В., Поляков, В. С., Прыганов, С. Г. Решение экологических проблем при проектировании гидротехнических сооружений (на примере бассейновой геосистемы Верхней Кубани), Южный научный центр РАН, 2009, 309 с.
- 15. Буслалаев, И. В. Применение обобщенного гармонического анализа для характеристики рельефа водосборов. Проблемы гидроэнергетики и водного хозяйства. Вып.2. Алма-Ата, 1964, 48 с.
- 16. Вода России. Экосистемное управление водопользованием. / Под научной редакцией А.М. Черняева; ФГУП РосНИИВХ. Екатеринбург, Издательство «АКВАПРЕСС», 2000. 356 с.
 - 17. Водные ресурсы СССР и их использование. Л., Гидрометеоиздат, 1987. 302 с.
- 18. Водосбор. Управление водными ресурсами на водосборе. Под ред. А.М. Черняева Екатеринбург, изд-во «Виктор», 1994. 160 с. Водохранилища и их воздействия на окружающую среду. М., Наука, 1986. 367 с.
- 19. Вернадский, В. И. Философские мысли натуралиста / В. И. Вернадский. Изд. «Наука», 1988.-520 с.
- 20. Водно-болотные угодья России. Том 6. Водно-болотные угодья Северного Кавказа (под общ.ред. А.Л. Мищенко) М.: WetlandsInternacional, 2006. 316 с.
- 21. Воропаев, Г. В., Благоверов, Б. Г., Исмайылов, Г. Х. Экономико-географические аспекты формирования территориальных единиц в водном хозяйстве страны. М.: Наука, 1986. 240 с.
 - 22. Геохимия окружающей среды. Под ред. Ю.Е.Саета. Недра, 1990.
- 23. Гидрогеология СССР. Том IX (Северный Кавказ). Москва, изд-во «Недра», 1968. 488 с.
 - 24. Годунов, С. К. Уравнения математической физики. М.: Наука, 1971. 416 с.
- 25. ГЕД, Р. Дейвис Энергия для планеты Земля./ ГЕД, Р. // В мире науки. 1990. №11. С. 7 16. Глазовская М.А. Геохимические основы типологии и методики исследований природных ландшафтов. Смоленск, «Ойкумена», 2002.

- 26. Гольдберг, В. М., Газда, С. Гидрогеологические основы охраны подземных вод от загрязнения. М., Недра, 1984.
- 27. Гареев, А. М. Оптимизация водоохранных мероприятий в бассейне реки (географоэкологический аспект). – СПб.: Гидрометеоиздат, 1995.
- 28. Дончева, А. В., Казаков Л. К., Калуцков В. Н. Ландшафтная индикация загрязнения природной среды. М., Экология, 1992. 256 с.
- 29. Дубинина, В. Г., Гаргопа, Ю. М., Чебанов, М. С., Катунин, Д. Н., Филь, С. А. Геология СССР, Т.XLVI, 1970.
- 30. Игнатьев, А. М., Крохмаль, А. Г., Хворостов, В. В. Неблагоприятные природные процессы на территории Северного Кавказа и их мониторинг // Научная мысль Кавказа. № 4, 1998. 3 9 с.
- 31. Израэль, Ю. А., Гасилина, Н. К., Ровинский, Ф. Я. Мониторинг загрязнения природной среды. Л., Гидрометеоиздат, 1978. 560 с.
- 32. Ильин, В. Б. О нормировании тяжелых металлов в почве // Почвоведение, №9,1986. 90-98c.
- 33. Израэль, Ю. А. К проблеме оценки и прогноза изменений состояния экосистем/ Ю. А. Израэль, Л. М. Филиппова, Г. Э. Инсаров, Семевский, С. М. Семенов// Проблемы экологического мониторинга и моделирования экосистем. М.: Гидрометеоиздат, 1985. т.7. С. 9 26.
- 34. Румянцев, И.С., Кромер, Р. Использование методов инженерной биологии в практике гидротехнического и природоохранного строительства: И.С. Румянцев, Р. Кромер; Под ред. И. С. Румянцева. М.: Изд-во МГУЦ, 2003. 259 с.
- 35. Калюжина, Е.А., Гвоздков, И.А., Семенова, Е.А., Сергина, Н.М. Разработка и экспериментальная оценка эффективности технического решения для снижения неорганизованных пылевых выбросов в атмосферу города //Современная наука и инновации: 2015. № 4 (12). С. 131 133.
- 36. Колесников, С. И., Казеев, К. Ш., Вальков, В. Ф. Экологические последствия загрязнения почв тяжелыми металлами. Ростов-на-Дону, изд-во СКНЦ ВШ, 2000.
- 37. Крохмаль, А. Г. Карачаево-Черкесия: эколого-географические проблемы. Ростовна-Дону. Изд-во РГУ, 1999.-200 с.
- 38. Кузнецов, О. Л., Кузнецов, П. Г., Большаков, Б. Е. Система природа общество человек: Устойчивое развитие. Государственный научный центр Российской Федерации ВНИИ геосистем «Дубна», 2000. 410 с.
- 39. Ковальчук, М. В. От синтеза в науке к конвергенции в образовании / М. В. Ковальчук // Образовательная политика. 2010. № 11— 12 (49-50). с. 1— 12.

- 40. Ковальчук, М. В., Конструктор для будущего / М. В. Ковальчук, О. С. Нарайкин // В мире науки. -2011. -№ 9. с. 24-31.
- 41. Кузанский, Н. (книжная серия Философское наследие) Том 1/ Н. Кузанский М., 1979. Том 2. М., 1980
- 42. Критерии оценки экологической обстановки территории для выявления зон чрезвычайной экологической ситуации и зон экологического бедствия. М., 1992.
- 43. Лосев, К. С. Экологические проблемы и перспективы устойчивого развития России в XXI веке / К. С. Лосев. М.: «Космосинформ». 2001. 400 с.
- 44. Бондаренко, В. Л., Семенова, Е. А., Николенко, Д. А., Клименко, О. В. Природнотехнические системы в использовании водных ресурсов: территории бассейновых геосистем (научная монография) / Новочеркасский инженерно-мелиоративный институт им. А.К. Кортунова ФГБОУ ВПО «ДГАУ»; ФГАОУ ВПО Северо-Кавказский федеральный университет; ФГБОУ ВПО Волгоградский государственный архитектурно-строительный университет. Новочеркасск: ЮРГПУ (НПИ), 2016. 200 с.
- 45. Бондаренко, В. Л., Семенова, Е. А., Алиферов, А. В., Клименко, О. В. Экологическая безопасность в строительстве. Инженерно-экологические изыскания в комплексе изысканий под строительство водохозяйственных объектов (научная монография) / Новочеркасский инженерно-мелиоративный институт им. А.К. Кортунова ФГБОУ ВО Донской ГАУ. Новочеркасск; ЮРГПУ (НПИ), 2016. 280 с.
- 46. Бондаренко, В. Л., Семенова, Е. А., Алиферов, А. В., Клименко, О. В. Методология формирования новых идей в технологических процессах использования водных ресурсов // Вестник Волгоградского государственного архитектурно-строительного университета. Серия: Строительство и архитектура. 2017. Вып. 50(69). С. 73–79.
- 47. I.V. Stefanenko, E.A. Semenova, O.V. Klimenko, V.A. Bondarenko. Fundamentals of Methodology of Development of the Technical Theory of Natural and Technical Systems in Use of Water Resources. Applied Mechanics and Materials, Vol. 875, pp. 141-144, 2018.
- 48. Клименко, О. В. Основы методологии оценки воздействия на природные среды водохозяйственных объектов оросительных систем / О.В. Клименко // **Проблемы** охраны производственной и окружающей среды: сборник материалов и научных трудов инженеров-экологов. Вып. 8 / М-во образования и науки Рос. Федерации; Волгогр. гос. технич. ун-т; Союз предприятий и организаций, обеспечивающих рациональное использование природных ресурсов и защиту окружающей среды «Экосфера»; Российский союз научных инженерных общественных организаций, Волгоградское областное отделение; под ред. В. Н. Азарова Волгоград : ВолгГТУ, 2018. 22 28с.

- 49. Клименко, О. В. Методологические основы обеспечения экологической безопасности водохозяйственных объектов в составе ПТС «П.С. В.О. Н» / О. В. Клименко // Проблемы охраны производственной и окружающей среды: сборник материалов и научных трудов инженеров-экологов. Вып. 8 / М-во образования и науки Рос. Федерации; Волгогр. гос. технич. ун-т; Союз предприятий и организаций, обеспечивающих рациональное использование природных ресурсов и защиту окружающей среды «Экосфера»; Российский союз научных инженерных общественных организаций, Волгоградское областное отделение; под ред. В. Н. Азарова Волгоград : ВолгГТУ, 2018. 28 32с.
- 50. Vos H.B. The State of Application of Economic Instruments for Environmental Protection in Some OECD Countries // Environmental Charges. An International Exchange of Experiences. Proc. Int. Symp., Berlin, FFU-Rep 90-1, 1989. P. 27 74.
- 51. Лобойко, В. Ф., Остаали, М., Семенова, Е. А. О дисперсном составе пыли от источников выбросов на предприятиях стройиндустрии // Современная наука и инновации: 2016. №1(13). С. 99 103
- 52. Максименко, Ю. Л., Горкина, И. Д. Оценка воздействия на окружающую среду // Пособие для практиков: РЭФИА. М., 1999. 91 с.
- 53. Методические подходы к экологическому нормированию антропогенного сокращения речного стока // Водные ресурсы. №1, 1996. С. 78 85.
- 54. Методические рекомендации по геохимической оценке загрязнения территорий городов химическими элементами. М., ИМГРЭ, 1986.
- 55. Методические рекомендации по геохимической оценке состояния поверхностных вод. М., ИМГРЭ, 1985.
- 56. Методические указания по оценке степени опасности загрязнения почвы химическими элементами. М., 1987.
- 57. Методические рекомендации по составлению эколого-геологических карт масштаба 1:200000 -1:100000. М., ВСЕГИНГЕО, 1998.
- 58. Методические рекомендации по оценке загрязненности городских почв и снежного покрова тяжелыми металлами. М., Почвенный институт им. В. В. Докучаева, 1999. 31 с.
- 59. Методические указания по оценке городских почв при разработке градостроительной и архитектурно-строительной документации. М., 1996. 36 с.
- 60. Моисеев, Н.Н. Человек и ноосфера / Н.Н.Моисеев // М., Молодая гвардия. 1992. 439 с.
- 61. Мотузова, Г.В. Почвенно-химический экологический мониторинг / Г. В. Мотузова // М., изд-во МГУ, 2001.-86 с.

- 62. Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основании удельных показателей). С-Пб, 1997.
- 63. Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выделений). С-Пб, 1997.
- 64. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 65. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. С-Пб., 2005.
- 66. Методические рекомендации по геохимической оценке загрязнения территорий городов химическим элементами. М., Изд-во ИМГРЭ, 1982.
- 67. Методические рекомендации по геохимической оценке состояния поверхностных вод. М., Изд-во ИМГРЭ, 1985.
- 68. Методические указания по оценке степени опасности загрязнения почвы химическими элементами. М., 1987.
- 69. Мышко, Ф. Г. Экологическая безопасность / Ф.Г. Мышко. М.: Юнити-Дана, 2003. 175 с.
- 70. Научно-прикладной справочник по климату СССР. Серия 3. Часть 1– 6. Вып. 13. Л: Гидрометеоиздат, 1990.
- 71. Николаенко, В. Т. Лес и защита водоемов от загрязнения / В. Т. Николенко. М., Лесная промышленность, 1980. 264 с.
- 72. Николис, Г., Познание сложного / Г. Николис, И. Пригожин. М.: Мир, 1990. 425 с.
- 73. Николис, Γ ., Пригожин, И. Самоорганизация в неравновесных системах / Γ . Николис, И. Пригожин. М.: Мир, 1979. 440 с.
 - 74. Одум, Ю. Основы экологии / Ю. Одум; пер. с англ. М.: Мир, 1987. С. 40–60.
- 75. ОНД-86 «Методика расчёта концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий». Л., Гидрометеоиздат, 1987.
- 76. Объедков, Ю.Л. Методологические принципы оценки экологической ситуации в системе водосбор водоем. / Ю.Л. Объедков // Экологические системы и приборы. 2000. № 10.-C.27-34
- 77. Чеботарев, А.И. Общая гидрология:/ А.И. Чеботарев: Л.: Гидрометиздат, 1975 544 с.
- 78. Азаров, В. Н., Маринин, Н. А., Бурханова, Р. А., Азаро, А. В. О дисперсном составе пыли в воздушной среде в производстве строительных материалов / В. Н. Азаров, Н. А. Маринин, Р. А. Бурханова, А. В. Азаров // Вестник Волгоградского государственного

- архитектурно-строительного университета. Серия: Строительство и архитектура. 2013. № 30. С. 256 260.
- 79. Пригожин, И. Введение в термодинамику необратимых процессов / И. Пригожин. М. Л., 1960. 380c.
- 80. Положение об организации и осуществлении государственного мониторинга окружающей среды (Утв. пост. Правительства РФ от 31 марта 2003 г. №177)
- 81. Пригожин, И., Порядок из хаоса / И. Пригожин, И. Стенгерс. М. : Прогресс, 1986. 256 с.
 - 82. Перельман, А. И. Геохимия / А. И. Перельман. М.: Высшая школа, 1989. 528 с.
- 83. Перельман, А. И., Касимов, Н. С. Геохимия ландшафтов / А.И. Перельман, Н. С. Касимов. М., Астрея, 2000.
- 84. Приваленко, В. В. Геохимическая оценка экологической ситуации в г.Ростове-на-Дону / В. В. Приваленко. Ростов-на-Дону, 1993. – 200 с.
- 85. Приваленко, В. В., Безуглова, О. С. Экологические проблемы антропогенных ландшафтов Ростовской области / В. В. Приваленко, О. С. Безуглова. Ростов-на-Дону, СКНЦ ВШ, 2003. 290 с.
- 86. Приваленко В. В., Кузнецов И. Н., Демченко, С. Г. Эколого-геохимический мониторинг на полигонах ТОПП г. Ростова-на-Дону / В. В. Приваленко, И. Н. Кузнецов, С. Г. Демченко. ЮНЦ РАН, 2009. 300 с.
- 87. Приваленко, В.В., Минкина, Т.М., Бондаренко, В.Л. Экологическая безопасность в строительстве / В. В. Приваленко, Т. М. Минкина, В. Л. Бондаренко // Инженерно-экологические изыскания в комплексе изысканий под строительство. Ростов-на-Дону, изд-во ЮФУ, 2012. 200 с.: илл.
- 88. Приваленко, В. В. Интегральная оценка экологической ситуации на территории Астраханской области. Экология биосистем: Проблемы изучения, индикации и прогнозирования / В. В. Приваленко // Материалы II Международной научно-практической конференции. Астрахань, Изд-во Астраханского гос. ун-та. 2009. с. 153 158.
- 89. Азаров, В. Н., Ажгиревич, А. И., Бондаренко, В. Л., Грачев, В. А., Гутенев, В. В. и др. Промышленная экология: Учеб.пособие./ В. Н. Азаров, А. И. Ажгиревич, В. Л. Бондаренко, В. А. Грачев, В. В. Гутенев и др.; Под ред. В.А. Грачева. М.: ИКЦ «МарТ»; Ростов н/Д: Издательский цент «МарТ», 2007. 555 с.
- 90. Реймерс, Н.Ф. Природопользование / Н.Ф. Реймерс: Словарь-справочник: М.: Издво «Мысль» 1990. 639 с.
- 91. Порядок определения размеров ущерба от загрязнения земель химическими веществами. (Москва, 1993 г.).

- 92. Румянцев, И.С., Козлов, Д.В. Экологические проблемы водохранилищ России и конструктивная гидроэкология / И. С. Румянцев, Д. В. Козлов // Гидротехническое строительство, №6, 1999. С. 53 54.
- 93. Руководство по химическому анализу поверхностных вод суши. Л., Гидрометеоиздат, 1977.
- 94. Россия: Вводно-ресурсный потенциал / под науч. ред. А. М. Черняева ; РосНИИВХ.— Екатеринбург, 1998. – 338 с.
- 95. Россия: Водохозяйственное устройство / под науч. ред. А. М. Черняева ; РосНИИВХ. Екатеринбург: Изд-во «Агрокосмоэкология», 1999. 400 с.
- 96. Россия: социально-экологические водные проблемы / под науч. ред. А. М. Черняева. Екатеринбург: Изд-во «Агрокосмоэкология», 1999. 260 с.
- 97. Румянцев, И. С. Использование методов инженерной биологии в практике гидротехнического и природоохранного строительства / И. С. Румянцев, Р. Кромер; под ред. И. С. Румянцева. М.: Изд-во МГУЦ. 2003. 259 с.
- 98. Сафронов, И. Н. Геоморфология Северного Кавказа / И. Н.Сафронов. Ростов-на-Дону, 1969.
- 99. Сает, Ю. Е. Геохимическая оценка техногенной нагрузки на окружающую среду / Ю. Е. Сает // Геохимия ландшафтов и география почв. М., 1982, с. 84 100.
- 100. Сергина, Н. М., Семенова, Е. А., Кондратенко, Т. О. Пути снижения выбросов пыли извести в атмосферу при производстве строительных материалов / Н. М. Сергина, Е. А. Семенова, Т. О. Кондратенко // Международный научный журнал Альтернативная энергетика и экология: 2013. № 12 (134). С. 48 50.
- 101. Семенова, Е.А. Совершенствование схем компоновки систем обеспыливания для локализующей вентиляции в производстве извести // автореферат дис. кандидата технических наук : 05.26.01, 05.23.19 / Волгоградский государственный архитектурно-строительный университет. Волгоград, 2013
- 102. Семенова, Е. А., Маршалкин, М. Ф., Саркисова, С. Г. От экологически ответственного хозяйствования к сохранению водных и энергетических ресурсов / Е. А. Семенова, М. Ф. Маршалкин, С. Г. Саркисова // Инженерный вестник Дона: 2014. Т. 29.№2. С. 61.
- 103. Семенова, Е. А., Маршалкин, М. Ф., Саркисова, С. Г. Аспекты реализации на практике современных технологий обращения с твердыми бытовыми отходами / Е. А. Семенова, М. Ф. Маршалкин, С. Г. Саркисова // Проблемы региональной экологии: 2014. № 6. С. 148 152.

- 104. Семенова, Е. А., Сергина, Н. М., Азаров, Д. В., Гвоздков, И. А. Оценка фракционного состава промышленной пыли, поступающей в атмосферу города (на примере пыли, выделяющейся от электросталеплавильной печи) / Е. А. Семенова, Н. М. Сергина, Д. В. Азаров, И. А. Гвоздков // Современная наука и инновации: 2016. № 1 (13). С. 170 172.
- 105. Семенова, Е. А., Маршалкин, М. Ф. Проблемы сохранения гидролитосферы: фундаментальные исследования и прикладные экологические задачи / Е. А. Семенова, М. Ф. Маршалкин // Экология кавказских минеральных вод: систе мный анализ и концептуальные подходы: Пятигорск. 2016. С. 154 156.
- 106. Сидякин, П. А., Семенова, Е. А., Абаринов, А. Н. Экономические расчеты для снижения внутреннего облучения населения в помещениях за счет поступления радона от строительных материалов / П. А. Сидякин, Е. А. Семенова, А. Н. Абаринов // Международное научное издание Современные фундаментальные и прикладные исследования: 2013.№ 3(10). С. 40-43.
- 107. Урсул, А. Д., Барлыбаев, Х. А., Линке, П., Лосев, К. С. Устойчивое развитие и водные ресурсы / А. Д. Урсул, Х. А. Барлыбаев, П. Линке, К. С. Лосев М., изд-во «Проспект», 2005. 207 с.
- 108. Уломов, В. И. Общее сейсмическое районирование территории Российской Федерации ОСР-97. Список населенных пунктов Российской Федерации, расположенных в сейсмических районах. Карты общего сейсмического районирования ОСР-97 (вкладка) / В. И. Уломов, // Строительные нормы и правила «Строительство в сейсмических районах» СНиП II-7-81*. Издание официальное. М.: Госстрой, 2000. С.25 44.
- 109. Хайтун, С. Д. Социальная эволюция, энтропия и рынок / С. Д. Хайтун // Общественные науки и современность. № 6, 2000. С. 120 134.
 - 110. Хакен, Г. Синергетика / Г. Хакен М., Мир, 1980. 348 с.
- 111. Хазен, А. М. Разум природы и разум человека / А. М. Хазен. М.: РИО «Мособлупрполиграфиздат». $2000.-607~\mathrm{c}$.
- 112. Хват, В. М. Анализ антропогенного воздействия на формирование поверхностного стока / В. М. Хват. М., ВНИИВО, 1989.
- 113. Хованский, А. Д. Приваленко В.В. Геохимическая оценка речной системы Нижнего Дона / А. Д. Хованский, В. В. Приваленко. Ростов-на-Дону, 1990. 144 с.
- 114. Хайтун, С. Д. Фундаментальная сущность эволюции / С. Д. Хайтун // Вопросы философии. 2001. № 2. с. 23.
- 115. Черняев, А. М., Дальков, М. П., Прохорова, Н. Б., Шахов, И. С. Водосбор / А. М. Черняев, М. П. Дальков, Н. Б. Прохорова, И. С. Шахов. Екатеринбург, РосНИИВХ, издво «Виктор», 1994. 159 с.

- 116. Шмаль, А. Г. Методология создания национальной системы экологической безопасности / А. Г. Шмаль // Экологический вестник России. 2005. № 7. С.57 59.
- 117. Шмаль, А. Г. Методологические основы создания системы экологической безопасности территории / А. Г. Шмаль. Бронницы. МП «ИКЦ» БНТВ, 2000. 216 с.
- 118. Шварц, С. С. Экологические закономерности эволюции / С. С. Шварц. М.: Наука, $1980.-240~\mathrm{c}$
- 119. Шитиков, В. К., Розенберг, Г. С., Зинченко, Т. Д. Количественная гидроэкология : методы, критерии, решения / В. К. Шитиков, Г. С. Розенберг, Т. Д. Зинченко //. Кн.1 М. : Наука, 2005.2 81 с.
 - 120. Эткинс, П. Порядок и беспорядок в природе / П. Эткинс. М.: Мир, 1987. 268 с.
- 121. Бондаренко, В.Л. Экологическая безопасность в строительстве. Инженерноэкологические изыскания в комплексе изысканий под строительство водохозяйственных объектов: монография / В.Л. Бондаренко [и др.]; Новочеркасский инженерно-мелиоративный институт им. А. К. Кортунова ФГБОУ ВО Донской ГАУ— Новочеркаск, 2016. — 309 с.
- 122. Бондаренко, В. Л. Экологическая безопасность в природообустройстве, водопользовании и строительстве: Экологическая инфраструктура бассейновых геосистем: Монография / В. Л. Бондаренко [и др.] Новочеркасск: ЮРГТУ (НПИ), 2012. 308 с.
- 123. Azarov, A.V., Zhukova, N.S., Sidorenko, V.F. Improving the computational model for approximation of particle functions over diameter of dust in the work area and at the border of the sanitary protection zone // Procedia Engineering. 2016. T. 150. C. 2073–2079.
- 124. Aerodynamic Characteristics of Dust in the Emissions Into the Atmosphere and Working Zone of Construction Enterprises / V.N. Azarov, A.I. Evtushenko, V.P. Batmanov, etc. // International Review of Civil Engineering. 2016. Vol. 7. № 5. Pp. 132–136.
- 125. Azarov, V. N., Trokhimchuk, M. V., Sidelnikova, O. P. Research of dust content in the earthworks working area // Procedia Engineering. 2016. T. 150. C. 2008–2012.
- 126. Bondarenko V. L., Semenova E. A. Principles of ecological and economical justification of construction and operating waterwork units// Procedia Engineering2. Cep. «2nd International Conference on Industrial Engineering, ICIE 2016»: 2016. C. 1861–1866.
- 127. Cairns M. A., Nebeker A. V., Gakstatter J. H. and Griffits W. Toxicity of I copper-spiked sediments to fresh water invertebrates // Environ. Toxicol. Pchenf– 1984.13. P. 435–446.
- 128. Chandler J.R. A biological approach to water quality management P//Wat. Poll. Control. 1970. 69. P. 415–22.
- 129. Convention on hasardous and noxious substances // Environ. And Law. Hf P 1996.-26.-Xa 5. P.202.
 - 130. De Pauw Niels. Biological assessment of Surface Water Quality: the Belgian Experience //

- La qualitadelleacquesuperficiali. Criteri per unametodologiaomogenea di valutazione. AttidelConvegnointernazionale. I RivadelGarda. PallazzodeiCongressi: 28–29 Aprile 1988.
- 131. Eadie B. J., Landrum P. F. and Faust W. Polycyclic aromatic hydrocarbons in sediments, pore water and the amphpod Pontoporeiahoyi from lake Michigan // Chemosphere. 1982. –11 (9). P. 847–858.
- 132. Karickhoff S. W., Brown D. and Scott T.A. Sorption of hydrophobic pollutants on natural sediments // Water Res. 1979. 13. P. 241–248.
- 133. Munthy B., Spuegel S. F. // J. Water Pollut. Control. Red. 1983. I Vol.56.— Xo6. P. 816.
- 134. Biswas A. K. Mathematical Models and Their Use in Water Resources Decision Making // Proceedings of the 14th Congress, International Association for Hydraulic Research, Paris, France, 1971, V. 5. P. 241 248.
- 135. Biswas A. K. Application of Mathematical Models to Water Resources Planning // Climatic Resources and Economic Activity / Ed. By J.A. Taylor, Newton Abbot, U.K.: David Charles, 1974. P. 159 172.
- 136. Biswas A. K. System Approach to Water Management // Bui. Int. Com. Irrig. Drain., NewDelhi, January, 1975. P. 12 19.
- 137. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0. (User Manual-Draft Version). US Army Engineer Waterways Experiment Station, Vicksburg, Miss., 1995.
- 138. Dreiss S. J. Regional scale transport in a karst aquifer // Water Resour. Res., 1989, 25. P. 126 134.
- 139. Haith D. A., Loucks D. P. Estimating the Political Feasibility of Alternative Water Resource Plans // Proceedings of the International Symposium on Modelling Techniques in Water Resources Systems, Ottawa, May, 1972, V. 1. P. 309 318.
- 140. Johson W. K. Use of Systems Analysis in Water Resources Planning//J. Hydraul. I Div., Am. Soc., Civ., End., 1972, 98 N HY9. P. 1543 1556.
- 141. Kane J., Thompson W., Vertinsky I. Environmental Simulation and Policy Formulation: Methodology and Example (Water Policy for British Columbia) «/ Proceedings of the International Symposium on Modelling Techniques in Water Resources Systems, Ottawa, May, 1972, 1. P. 39 55.
- 142. Novotny V., Olem H. Water quality. Prevention, Identification, and Management of Diffuse Pollution, Van Nostrand Reinhold, New York, 1994. 1054 p.
- 143. Pollution Charges in Practice // Organization for Co-Operation and Development: OECD-Report. Paris, 1980. 118 p.

- 144. Questions and Answers about the New Drinking Water Act // Water Eng. and Manag., 1987, V. 134, N_{2} . 8. P. 40 41.
- 145. Radziejewski M., KundzewiczZ.Fractal analysis of flow of the river Warta. // Journal of Hydrology, 200 (1997). P. 280 294.
- 146. Rikun A. D., Chemyaev A. M., Shiryak I. M. A model fen economic stimulation of water pollution control measures in industrial and municipal sectors // The Hydrological Basis Water Resources Management, IAHS Publ., 1990, N 197.
- 147. Shanahan P., Somliody L. Modeling the Impacts of Diffuse Pollution on Receiving Water Quality, WP-95-2. HASA, Luxenburg, Austria, 1995. 53 p.
- 148. Webel G., Schatzmann M. Transverse mixing in open channel flow $/\!/$ J. Hydraulic Eng., 1984, 110, N 4. P. 423 435.

ество с ограниченной ответственносты

ИНН 2624032857, ОГРН 1102646000160 356800, Ставропольский край, г.Буденновск, ул.Пушкинская, д.234 Тел.: +7 962 496 67 38

Тел.: +7 495 642 11 79 E-mail: energy-min@mail.ru.

> **УТВЕРЖДАЮ** Директор ООО «ЭнергоМИН» енной ою.В. Никишин

От 15.02.2018 г. « претом ин

2018 г.

No34/2

АКТ ВНЕДРЕНИЯ

результатов диссертационной работы на соискание ученой степени кандидата технических наук Клименко Ольги Владимировны в деятельность: "QOO «ЭнергоМИН»

Комиссия в составе:

главный инженер – председатель комиссии – Ю.В. Никишин инженер по ООС (эколог) СОТиПК – В.С. Божук инженер группы ГТС и ГЗПТС – А.В. Мараховский инженер строительного контроля ДКС - Р.М.Манафов

составили настоящий акт о том, что результаты исследований Клименко Ольги Владимировны на тему «Исследование экологической безопасности и совершенствование ОВОС водохозяйственных объектов на примере бассейновых геосистем Ставропольского края» нашли практическое применение в повышении энергоэффективности путем внутрисистемной генерации электроэнергии на малых ГЭС обводнительно-оросительных систем (О.О.С.) Ставропольского края с обеспечением экологической безопасности в зонах влияния на действующих «Водохозяйственных объектах», в составе природнотехнических систем (ПТС) «Природная среда – Водохозяйственный объект – Население» («П.С.-В.О.-Н»), как фактора экологически устойчивого развития.

влияния зонах Предмет. Оценка экологической безопасности «Водохозяйственного объекта» на О.О.С. Ставропольского края.

Внедрены. Элементы по совершенствованию ОВОС Водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н», в оценке экологического состояния в зонах влияния «В.О.» как фактора по обеспечению экологической безопасности.

Результат. Внутрисистемная генерация электроэнергии на малых ГЭС О.О.С. Ставропольского края с обеспечением экологической безопасности в зонах влияния, что позволяет сократить выбросы парниковых газов в атмосферу на 74,8 тыс. тонн(по Нефтекумскому району) и на 13,2 тыс. тонн (по Буденновскому району), исходя из таблицы 2-Социально-экономическая эффективность МГЭС на О.О.С.

Инженер по О.О.С (эколог)

Инженер группы ГТС

Инженер-экономист

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ПРОИЗВОДСТВЕННЫЙ КООПЕРАТИВ

" АРХАНГЕЛЬСКИЙ"

с. Архангельское Буденновского района Ставропольского края

тел. 92-555 92-364 р/счет №40702810000460000119 ИНН 2624025000/262401001 Филиал в г. Буденновске ОАО»МИНБ»г. Буденновск

УТВЕРЖДАЮ
Председатель СПК «Архангельский»
И.Д. Токарев

От 15.02.2018 г.

Nº 6

АКТ ВНЕДРЕНИЯ

Результатов диссертационной работы

На соискание ученой степени кандидата технических наук Клименко Ольги Владимировны в деятельность: СПК

Комиссия в составе:

«Архангельский»

председатель комиссии – Председатель СПК «Архангельский» Токарев И.Д. Главный инженер Иванов А.В.

Главный экономист Погорелова К.А.

составили настоящий акт о том, что результаты исследований Клименко Ольги Владимировны на тему «Исследование экологической безопасности и совершенствование ОВОС водохозяйственных объектов на примере бассейновых геосистем Ставропольского края» нашли практическое применение в повышении энергоэффективности путем внутрисистемной генерации электроэнергии на малых ГЭС обводнительно-оросительных систем (О.О.С.) Буденовского района с обеспечением экологической безопасности в зонах влияния на действующих «Водохозяйственных объектах», в составе природнотехнических систем (ПТС) «Природная среда – Водохозяйственный объект – Население» («П.С.-В.О.-Н»), как фактора экологически устойчивого развития.

Предмет. Оценка экологической безопасности в зонах влияниз «Водохозяйственного объекта» на О.О.С. Буденовского района.

Внедрены. Элементы по совершенствованию OBOC Водохозяйственных объектов в составе ПТС «П.С.-В.О.-Н», в оценке экологического состояния в зонах влияния «В.О.» как фактора по обеспечению экологической безопасности.

Результат. Внутрисистемная генерация электроэнергии на малых ГЭС О.О.С. Буденовского района с обеспечением экологической безопасности в зонах влияния, что позволяет сократить выбросы парниковых газов в атмосферу на 13,2 тыс. тонн, исходя из таблицы 2-Социально-экономическая эффективность МГЭС на О.О.С.

Главный инженер

Главный экономист_

Иванов А.В.

Погорелова К.А.

Таблица 1.2 – Данные по морфологии рек Западного Маныча [45,46]

_		1	1	,
№ п/п	Название реки	Длина ℓ , км	Площадь водосбора, <i>F</i> км ²	Связь с искусственной гидрографической сетью
1	2	3	4	5
	l	Бассейн Западног	о Маныча	
1.	р. Западный Маныч	219,3	32984	+ -
2.	р. Егорлык	448	15000	+
3.	р. Большая Кугульта	112	1310	+
4.	р. Кал алы	111	2060	-
5.	р. Джалга	88	776	+
6.	р. Расшеватка	74	962	-
7.	р. Ташла	70	1571	+-
8.	р. Дунда	62	707	+
9.	р. Малый Гок	62	363	+
10.	р. Горькая Балка	54	710	+
11.	р. Кевсала	50	ИЗО	+
12.	р. Малая Кугульта	48	710	+
13.	р. Русская	42	80	+
14.	р. Тугулук	42	381	+
15.	р. Терновка	36	237	+
16.	р. Ладовская Балка	36	410	-
17.	р. Большая Каменка	33	252	+
18.	р. Татарка	31	169	-
19.	р. Первая Татарка	30	177	-
20.	р. Земзюлька	30	нет данных	-
21.	р. Вторая Татарка	30	177	-
22.	р. Ерик	30	242	+
23.	р. Тахта	29	150	+
24.	р. Вербовка	25	135	-
25.	р. Медведка	25	76	-
26.	р. Большая Джалга	22	нет данных	+
27.	р. Мачок	20	131	+
28.	р. Темная	20	65	-
29.	р. Бобрик	19	176	+
30.	р. Сухая Тахта	19	89	+
31.	р. Грушевая	19	63	+
32.	р. Магодынка	18	291	-

1	2	3	4	5
33.	р. Чибрик	18	84	-
34.	р. Казинка	18	172	1
35.	р. Без названия (лев.	18	137	-
36.	р. Беспутка	16	28	-
37.	р. Малая Ташла (Чла)	16	115	-
38.	р. Киста	15	134	+
39.	р. Власова	15	нет данных	+
40.	р. Малая Джалга	14	нет данных	+
41.	р. Корягина	14	69	+
42.	р. Черная	14	55	+
43.	р. Берестовка	14	105	+
44.	р. Шангала	14	108	+
45.	р. Без названия (лев.	13	45	-
46.	р. Кундули	12	131	+
47.	р. Сухая	12	67	+-
48.	р. Терновочка	12	84	+
49.	р. Ремазонка	12	92	+

Таблица 1.3 – Данные по морфологии рек Восточного Маныча [45,46]

Бассейн Восточного Маныча 1. р. Восточный Маныч 256		Название реки	Длина ℓ , км	водосбора, F	Связь с искусственной гидрографической сетью
Бассейн Восточного Маныча 1. р. Восточный Маныч 256	1	2	3	4	5
2. р. Калаус 436 9700 + 3. р. Айгурка 137 2260 - 4. р. Рагули (вместе Кучерлой) 117 1060 + 5. р. Большой Янкуль 78 645 + 6. р. Вторая Горькая 72 нет данных + 7. р. Грачевка 62 2196 - 8. р. Чограй 48,8 193 + 9. р. Первая Горькая 43 883 - 10. р. Янкуль 40 292 + 11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Кольшая Джухта 25 нет данных + 20. р. Казгулак 24 163 +			ассейн Восточног	го Маныча	
3. р. Айгурка 137 2260 -	1.	р. Восточный Маныч	256	14603	+
4. р. Рагули (вместе Кучерлой) 117 1060 + 5. р. Большой Янкуль 78 645 + 6. р. Вторая Горькая 72 нет данных + 7. р. Грачевка 62 2196 - 8. р. Чограй 48,8 193 + 9. р. Первая Горькая 43 883 - 10. р. Янкуль 40 292 + 11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25 нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54	2.	р. Калаус	436	9700	+
5. р. Большой Янкуль 78 645 + 6. р. Вторая Горькая 72 нет данных + 7. р. Грачевка 62 2196 - 8. р. Чограй 48,8 193 + 9. р. Первая Горькая 43 883 - 10. р. Янкуль 40 292 + 11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кутутка 22 114 +	3.	р. Айгурка	137	2260	-
6. р. Вторая Горькая 72 нет данных + 7. р. Грачевка 62 2196 - 8. р. Чограй 48,8 193 + 9. р. Первая Горькая 43 883 - 10. р. Янкуль 40 292 + 11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Развилка	4.	р. Рагули (вместе Кучерлой)	117	1060	+
7. р. Грачевка 62 2196 - 8. р. Чограй 48,8 193 + 9. р. Первая Горькая 43 883 - 10. р. Янкуль 40 292 + 11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 167 - </td <td>5.</td> <td>р. Большой Янкуль</td> <td>78</td> <td>645</td> <td>+</td>	5.	р. Большой Янкуль	78	645	+
8. р. Чограй 48,8 193 + 9. р. Первая Горькая 43 883 - 10. р. Янкуль 40 292 + 11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 21 118 24. р. Мутяняка 21 1	6.	р. Вторая Горькая	72	нет данных	+
9. р. Первая Горькая 43 883 - 10. р. Янкуль 40 292 + 11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19	7.	р. Грачевка	62	2196	-
10. р. Янкуль 40 292 + 11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	8.	р. Чограй	48,8	193	+
11. р. Ягурка 40 нет данных - 12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 20 82 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	9.	р. Первая Горькая	43	883	-
12. р. Голубь 38 360 + 13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	10.	р. Янкуль	40	292	+
13. р. Кондрашкина 31 394 + 14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	11.		40	нет данных	-
14. р. Барханчак 27 250 + 15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	12.	р. Голубь	38	360	+
15. р. Ляхова 26 98 - 16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	13.	р. Кондрашкина	31	394	+
16. р. Жилейка 26 101 + 17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	14.	р. Барханчак	27	250	+
17. р. Ташла 26 116 - 18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	15.	р. Ляхова	26	98	-
18. р. Антуста 26 148 + 19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	16.	р. Жилейка	26	101	+
19. р. Большая Джухта 25. нет данных + 20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	17.	р. Ташла	26	116	-
20. р. Казгулак 24 163 + 21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	18.	р. Антуста	26	148	+
21. р. Свистунова 22 54 - 22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	19.	р. Большая Джухта	25.	нет данных	+
22. р. Кугутка 22 114 + 23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	20.	р. Казгулак	24	163	+
23. р. Кианкиз 21 118 24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	21.	р. Свистунова	22	54	-
24. р. Мутнянка 21 167 - 25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	22.	р. Кугутка	22	114	+
25. р. Бешпагирка 21 256 - 26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	23.	р. Кианкиз	21	118	
26. р. Развилка 20 82 - 27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	24.	р. Мутнянка	21	167	-
27. р. Чечера 19 94 - 28. р. Куберла 19 124 +	25.	р. Бешпагирка	21	256	-
27. р. Чечера 19 94 - 28. р. Куберла 19 124 +			20	82	-
	-		19	94	-
	28.	р. Куберла	19	124	+
			18	66	_
30. р. Кофанова 17 75 -	30.		17	75	-
31. р. Камбулат 17 189 -			17	189	-
32. р. Горькая (Малая Горькая) 16 144 -	32.	р. Горькая (Малая Горькая)	16	144	-
33. р. Мамайка 16 76 -	33.	р. Мамайка	16	76	-

1	2	3	4	5
34.	р. Спицевка	16	66	+
35.	р. Сладкий Ерлик	16	34	+
36.	р. Шангуста	15	86	+
37.	р. Бештума	14	74	-
38.	р. Куцая	14	51	+
39.	р. Сухая Кондрашкина	14	102	-
40.	р. Меснянкина	12	21	-
41.	р. Орехова	12	36	-
42.	р. Кононовка (Красная)	12	нет данных	+
43.	р. Башанта	12	65	-
44.	р. Терновая	И	26	-
45.	р. Без названия (1 лев. приток	11	28	-
46.	р. Без названия (пр. приток	11	44	-
47.	р. Без названия (2 лев. приток	10	32	-
48.	р. Ула	10	317	-
49.	р. Юсуп-Кулак	5	114	-

Таблица 1.6 – Данные по гидрографии р. Кубань и ее притоков в верхнем течении [45,46]

Название водотока	Куда впадает	Расстояние от устья, км	Длина водотока, км	Площадь водосбора, км ²	Водоохранная зона, м (ВК, 2006)
1	2	3	4	5	6
Кубань	Азовское	-	870	57900	200
	море				
Уллу-Кам	Кубань	870	36	599	100
Чирик-Кол	Уллу-Кам	21	12	67,9	100
Узун-Кол	Уллу-Кам	17	8,9	95,0	50
Уллу-Хурзук	Уллу-Кам	6,4	22	162	100
Учкулан	Кубань	870	21	389	100
Гондарай	Учкулан	21	12	129	100
Maxop	Учкулан	21	12	64,5	100
Даут	Кубань	848	44	239	100
Теберда	Кубань	819	60	1080	200
Аманауз	Теберда	60	11	177	100
Алибек	Аманауз	6,9	8,5	60,4	50
Домбай-	Аманауз	6,6	8,3	47,5	50
Ульген	-				
Гоначхир	Теберда	60	9,4	152	50
Буулген	Гоначхир	9,4	5,5	30,0	50
Клухор	Гоначхир	9,4	11	84,3	100
Уллу-Мурджу	Теберда	53	15	45,8	100

1	2	3	4	5	6
Джемагат	Теберда	40	4,2	147	50
М. Зеленчук	Кубань	732	65	1850	200
Аксаут	M.	65	77	843	200
	Зеленчук				
Mapyxa	M.	65	75	394	200
	Зеленчук				
Б. Зеленчук	Кубань	701	158	2730	200
Псыш	Б.	158	26	344	100
	Зеленчук				
София	Псыш	7,1	11	55,4	100
Архыз	Псыш	3,4	21	156	100
Кизгыч	София	158	25	156	100

Таблица 1.7 – Данные по гидрографии водотоков в расчетных створах [45, 46]

№ п/п	Река	Створ	Расстояние от устья, км	Площад ь водосбо ра, км ²	Средняя высота водосбо ра, м	Отмет ка уреза, м пла-	Уклон реки в створе, % топооснова
1	2	3	4	5	6	новая 7	M=1:2500 8
1	р. Б.Зеленчук	Архыз	156	513	2370	1435,0	9,55
2	р. Б.Зеленчук	Даусуз	130	313	2370	1433,0	7,55
	p. B.Senen tyk	(трасса канала)	113,6	779	2170	1002,3	10,1
3	р. Б.Зеленчук	Зеленчукская (ниже устья р.Хуса)	101,9	905	2030	890,2	9,26
3a	р. Б.Зеленчук	выше устья р.Кяфар		1005	1940		
4	р. Б.Зеленчук	Новоисправне нское (ниже устья р.Кяфар)	91,7	1670	1820	801,5	7,72
5	р. Б.Зеленчук	Исправная	68,9	1920	1740	650,4	4,03
6	р. Б.Зеленчук	охшиР-ижиИ	56,6	2060	(1700)	576,7	6,52
7	р. Б.Зеленчук	Бесленей	50,5	2130	(1670)	543,4	5,20
8	р. Б.Зеленчук	Старокувинск ий	37,9	2230	(1640)	477,5	4,77
9	р. Б.Зеленчук	Апсуа	25,5	2460	(1500)	420,2	4,38
10	р. Б.Зеленчук	Ивановское	8,7	2690	(1420)	348,7	4,30
11	р. Б.Зеленчук	Невинномысс к (устье)	1,1	2730	1400	319,3	3,53
12	p.Xyca	устье	1,0	97,7			
13	р.Кяфар	устье	1,0	665			
14	р. Маруха	Маруха	19,9	301	2190	1060,3	14,1

продолжение таблицы 1.7

1	2	3	4	5	6	7	8
15	р. Маруха	трасса канала	15,2	336	2080	990,6	11,7
16	p. Mapyxa	устье	1,4	394	1910	828,9	9,74
17	р. Аксаут	Красный Карачай	49,5	317	2640	1532,0	13,2
17a	р. Аксаут	гидроузел	32,4	509	2410	1231,8	14,4
18	р. Аксаут	Хасаут- Греческий	24,3	560	2380	118,4	13,0
19	р. Аксаут	трасса канала	14,6	580	2260	986,0	11,6
20	р. Аксаут	устье	0,8	843	2010	821,6	9,57
21	р. Аксаут	устье	1,0	191	1350		
22	р. Кардоник	ниже слияния р.Маруха и р.Аксаут	63,2	1250	197 0	793,9	9,57
23	р. М.Зеленчук	Али- Бердуковский	52,2	1350	(1870)	702,7	7,14
24	р. М.Зеленчук	Хабез	44,5	1440	(1810)	642,0	11,8
25	М.Зеленчук	Кош-Хабль	28,8	1620	(1700)	549,9	5,44
26	М.Зеленчук	Адыге-Хабль	7,3	1820	(1610)	432,7	4,80
27	М.Зеленчук	Эркен-Шахар (устье)	0,9	1850	1590	401,9	4,70

Таблица 1.10 – Данные по морфологии бассейновой геосистемы реки Кумы [45, 46]

№ п/п	Название реки	Длина ℓ , км	Площадь водосбора, <i>F</i> км ²	Связь с искусственной гидрографической сетью
1	2	3	4	5
		Бассейн Кум	Ы	
1.	р. Кума	802	33,5	+
2.	р. Мокрая Буйвола	151	2490	+
3.	р. Мокрый Карамык	129	1656	-
4.	р. Этока	120		+
5.	р. Суркуль	119	886	+
6.	р. Подкумок	115	2200	-
7.	р. Золка	105	945	+
8.	р. Томузловка	97	299	+
9.	р. Грязная	86	827	+
10.	р. Журавка	80	381	+
11.	р. Курунта	72	805	+
12.	р. Сухой Карамык (Горький	65	329	+
13.	р. Сухая Буйвола (лев.	63	679	-

1	2	3	4	5
14.	р. Щелкан	54	405	+
15.	р. Тамлык	52	361	-
16.	р. Сухой Карамык	49	293	
17.	р. Мокрая Сабля	46	350	+
18.	р. Куршавка	44	326	-
19.	р. Дарья	43	223	-
20.	р. Бугунта (Боргуста)	43	160	-
21.	р. Широкая	40	204	+
22.	р. Юца	40	261	-
23.	р. Калиновка	37	299	+
24.	р. Колодезная	37	220	-
25.	р. Каменная	37	636	-
26.	р. Горкуша	36	235	+
27.	р. Татарка	35	258	+
28.	р. Сухая Сабля	35	116	-
29.	р. Сухая Падина	35	296	+
30.	р. Крученая	29	138	+
31.	р. Сухая Буйвола (лев.	29	199	+
31.	приток Мокрой Буйволы)			ı
32.	р. Горькая (лев. приток	26	90	+
33.	Кумы) р. Джуца	25	105	-
34.	р. Грушевка	26	96	+
35.	р. Горькая (пр. приток	24	106	+
36.	р. Кучук	24	110	-
37.	р. Широкая (лев. приток	24	100	+
38.	р. Джемуха	24	187	-
39.	р. Березовая (Березовка)	24	172	-
40.	р. Копанская	23	134	+
41.	р. Журавочка	20	101	+
42.	р. Малая Буйвола	20	210	-
43.	р. Дунька	19	46	-
44.	р. Бурундук	19	47	-
45.	р. Балка Маковецкая	17	57	-
46.	р. Соленый Ярок	17	30	-
47.	р. Харитоновка	17	82	-
48.	р. Руднева	17	83	+
49.	р. Большой Калмычек	16		-
50.	р. Большой Ессентучек	16	100	-
51.	р. Терновка	16	92	+
52.	р. Терновка	16	46	-

1	2	3	4	5
53.	р. Малый Калмычек	15	61	-
54.	р. Буруны	15	46	-
55.	р. Киркиль	15	126	-
56.	р. Мокрая Золка	15		-
57.	р. Гнилушка	15	31	-
58.	р. Дубовка	15	105	+
59.	р. Ольховка	14	70	-
60.	р. Лозовка	14	115	-
61.	р. Ташла	13,5	117	-
62.	р. Горькая (лев. приток	13	41	-
63.	р. Золотушка	13	63	-
64.	р. Большая Вонючка	13	49	-
65.	р. Кочевка	12	40	+
66.	р. Грязнушка	12	23	+
67.	р. Теплушка	12	6	-
68.	р. Без названия (лев. приток	10	36	-
69.	р. Бешпалтырь	10	24	-
70.	р. Кабардинка	8	нет данных	-
71.	р. Яблонька	8	28	-

Таблица 1.11 — Данные по искусственной гидрографии сети бассейновых геосистем Ставропольского края [45, 46]

F			
Наименование	Назначение		
гидротехнического	гидротехнического	Водоисточник	Головной расход, M^3/c
сооружения	сооружения		
1	2	3	4
1. Архангельский	обводнительно-	р. Кума	1,5
канал	оросительный		
2. БСК	обводнительно-	р. Кубань	180
	оросительный		
3. БСК-1	обводнительно-	р. Кубань	180
	оросительный		
4. Широкий	орошение,	распределитель	13,4
распределитель	водоснабжение,	Широкий	
	подача воды		
	смежным системам,		
	подпитывание рек,		
	балок,		
	водохранилищ		
5. Обильненский	орошение,		6
распределитель Р-1	обводнение, подача		
	воды смежным		
	системам		

1	2	3	4
6. Подгорненский	орошение,	распределитель	2,2
распределитель Р-2	обводнение	Широкий	
7. БСК-2	обводнительно-	БСК-1	60
	оросительный		
8. Саблинский	орошение,	Александровский	21
распределитель	обводнение, подача	распределитель	
	воды смежным		
	системам		
9. Чернолесский	орошение	Саблинский	8
распределитель		распределитель	
10. БСК-3	обводнительно-	БСК-2	55
	оросительный		
11. БСК-4	обводнительно-	БСК-3	
	оросительный		
12. Елизаветинский	орошение		13,5
распределитель	-		
13. Егорлыкский	обводнительно-	р. Егорлык	13,0
канал	оросительный		
14. Кумо-	обводнительно-	р. Кума	60
Манычский канал	оросительный		
15. Бургун-	орошение	р. Кума	40
Маджарский канал	-		
16.	орошение	Терско-Кумский	3,0
Межхозяйственный	-	канал	·
канал ТКР-6			
17. Садовый канал	обводнительно-	Кумо-Манычский	14,8
	оросительный	канал	
18. Левокумская	обводнительно-	Кумо-Манычский	22
ветвь	оросительный	канал	
19. Закумский канал	обводнительно-	Кумо-Манычский	3,6
•	оросительный	канал	
20. Кумский	обводнительный	р. Кума	3
коллектор			
21. Курский	осушение поймы р.	Курганское	4
коллектор	Куры, обводнение,	водохранилище	
	орошение		
22. Куро-	обводнительно-	р. Малка	5
Марьинский канал	оросительный		
23. Левая ветвь	обводнительно-	Новотроицкое	17,5
Право-Егорлыкского	оросительный	водохранилище	
канала		-	
24. Канал им.	обводнительно-	р. Малка	6,5
Ленина	оросительный		
25. Магистральный	обводнительно-	р. Кума	7,2
канал (р. Кума)	оросительный		·
26. Магистральный	обводнительно-	Новотроицкое	5,4
канал системы	оросительный	водохранилище	•
Междуречье	_		
Кубань-Егорлык			

1	2	3	4
27. Магистральный	обводнительно-	Курганское	15
Левобережный	оросительный	водохранилище	
канал			
28. 1-й	обводнительно-	Магистральный	5
Сухопаднинский	оросительный	Левобережный	
канал		канал	
29. 2-й	обводнительно-	Большой Ле-	2
Сухопаднинский	оросительный	вобережный канал	
канал			
30. Советский	обводнительно-	Магистральный	5
распределитель	оросительный	Левобережный	
		канал	
31. Ростовановский	оросительный	Ростовановское	1,0
распределитель		водохранилище	
32. Большой	обводнительно-	Магистральный	4
Левобережный	оросительный	Левобережный	
канал		канал	
33. Комсомольский	обводнительно-	1-й Сухопаднинский	2
канал	оросительный	канал	
34. Малый	обводнительно-	Магистральный	2
Левобережный	оросительный	Левобережный	
канал		канал	
35. Ударник	обводнительно-	Большой Ле-	1,7
	оросительный	вобережный канал	
36. Малка-Золка	обводнительно-	р. Малка	2,5
	оросительный		
37. Малка-Кура	обводнительно-	р.р. Баксан, Малка	30
	оросительный		
38. Невинномысский	обводнительно-	р. Кубань	75
канал	оросительный		
39. Канал им.	обводнительно-	р. Подкумок	1,2
Октябрьской	оросительный		
революции			
40. Плаксейский	обводнительно-	р. Кума	5,7
канал	оросительный		
41. Полыновский	обводнительно-	р. Кума	2
канал	оросительный		
42.	обводнительно-	Новотроицкое	45
Правоегорлыкский	оросительный	водохранилище	
канал			
43. Теплушка	обводнительно-	р. Подкумок	1,5
	оросительный		
44. Терско-кумский	обводнительно-	р. Терек	100
	оросительный		
45. Каясулинский	обводнительно-	водохранилище	1
канал	оросительный	Зункарь	

продолжение таблицы 1.11

1	2	3	4
46. Ногайский канал	й канал обводнительно- водохранилище		4
	оросительный	Зункарь	
47. Караногайский	обводнительно-	Терско-Кумский	24
канал	оросительный	канал	
48. Нефтекумский	хозяйственно-	Терско-Кумский	3,5
канал	питьевое	канал	

Таблица 1.12 – Данные о прудах на территории Ставропольского края (по районам) [45,46]

Наименование района	кол-во шт	Суммарная площадь зеркала, га	Суммарный объем воды, тыс. м ³
1	2	3	4
1. Новоалександровский	101	1791,2	32679,2
2. Изобильненский	42	1686,36	31551
3. Благодарненский	33	740,05	11093
4. Туркменский	29	558,6	8568
5. Грачевский	30	513,4	17409,3
6. Шпаковский	66	502,7	10588
7. Александровский	27	481,65	7526,5
8. Петровский	42	430,6	4811,8
9. Советский	5	252 •	3840
1 0. Степновский	3	250	2506
1 1 . Красногвардейский	16	232,9	5858
12. Апанасенковский	10	172	4501
13. Новоселицкий	4	170	2092
14. Кировский	7	138	5250
15. Минераловодский	11	101,3	2219,2
16. Предгорный	22	90,3	1533
17. Георгиевский	7	88,7	380,2
18. Буденновский	5	83,8	899,5
19. Кочубеевский	20	80,3	2912
20. Ипатовский	10	60,7	2309
2 1 . Карачаево-Черкесская Республика	26	60,4	1408
22. Курский	2	55,6	370
23. Андроповский	15	40,8	1101,1
24. Левокумский	1	10,2	40,0
25. Арзгирский	2	4,8	341
ИТОГО	536	8596,36	161786,8

Таблица 1.13 — Данные о регулирующих водохранилищах на искусственной гидрографической сети бассейновых геосистем Ставрополья [45,46]

Наименование водохранилища	Площадь водохра- нилища, км ²	Полный объем, млн. м	Средняя глубина, м	Место сооружения водохранилища
1	2	3	4	5
1. Александровский водоем	0,7	3,4	4,86	приток р. Томузловка
2. Пруд «Базовый»	0,65	1,24	1,9	р. Горькая
3. Водоем Р-1	0,67	3,24	4,8	природная котловина
4. Волчьи Ворота	5,4	25,8	max 12	р. Томузловка
5. Гаркуша	0,57	1,54	max 9,1	балка Гаркуша
6. Георгиевский водоем	0,41	1,4	3,8	природная котловина
7. Горькобалковское	в стади	дии строительства		р. Горькая Балка
8. Грушевское	в стади	ии строительства		балка Грушевка
9. Дружба	0,45	1,8	4,4	природная котловина
10. Дундинское	27	80	6	р. Дунда
11. Егорлыкское	16,8	111,4	7	р. Егорлык
12. Зункарь	1,58	3,8	нет данных	естественное понижение
13. Ипатовский водоем	0,94	4,29	3,44	естественное понижение
14. Казенный пруд	0,44	1,3	3	р. Спицевка
15. Киевский пруд	1,65	5,5 4,5	3,5	р.Дунда
16. Кисловодское	0,66	4,5	6,8	пойма р. Подкумок
17. Красная Звезда	0,47	1,3	1,2	р. Мокрая Буйвола
18. Пруд Крученый	0,6	1,2	2	балка Крученая
19. Кубанское	50,2	620	12,3	котловина оз. Большое
20. Курахтинский пруд	0,26	1,8	6,7	р. Курахтинка
21. Курганское		11,75	5	р. Кура
22. Курское	2,35	11,4	2,1	р. Кура
23. Машук	0,246	1,5	6,1	р. Терек
24. Медяника	1,2	нет данных	1,25	на месте горько- соленого озера
25. Мелиоративный пруд	0,8	3,2	4	р. Томузловка
26. Новотерский пруд	0,06 0,2	0,07 0,97	1,2 4,85	р. Джемуха
27. Новотроицкое	12,2	83	7,3	р. Егорлык
28. Обильненский	0,289	1,66	5,74	степная долина
				-

1	2	3	4	5
29. Отказненское	нет данных	75	5,4	р. Кума
30. Победа	0,42	1,65	5,32	р. Мокрый Карамык
31. Пятигорский	0,55	2,3	4,2	площадка на берегу р. Подкумок
32. Родина	0,27	1	нет данных	конечная точка Воз- движенского распределителя
33. Ростовское	4,5	23	5Д	р. Кура
34. Сенгилеевское	42	805	19	оз. Сенгилеевское
35. Советское	1,7	7,9	4,6	р. Кура
36. Советское руно	0,23	1	нет данных	природная котловина
37. Степновское	6,22	4,4	3,1	балка около канала
38. Сухая падина	0,8	3,08	3,3	р. Сухая
39. Сухой Карамык	1,58	9,1	5,8	р. Сухой Карамык
40. Терский	0,52	1,05	2	р. Горькая Балка
41. Ульяновское	2,72	13,5	5	р. Сухой Карамык
42. Фрегатный	0,7	1,5	2,1	р. Бешпагирка
43. Чограйское	193	720	3,6	р. Восточный Маныч
44. Этокское	0,48	2,1	4,38	р. Этока

Таблица 1.14 – Характеристика прудов бассейновых геосистем Ставрополья [45, 46]

	Количес	Суммарная	Суммарный
$\mathcal{N}_{\underline{\mathbf{o}}}$	ТВО	площадь	объем воды,
Наименование района	прудов,	зеркала, га	тыс. м ³
	ШТ.		
1	2	3	4
1. Новоалександровский	101	1791,2	32679,2
2. Изобильненский	42	1686,36	31551
3. Благодарненский	33	740,05	11093
4. Туркменский	29	558,6	8568
5. Грачевский	30	513,4	17409,3
6. Шпаковский	66	502,7	10588
7. Александровский	27	481,65	7526,5
8. Петровский	42	430,6	4811,8
9. Советский	5	252	3840
10. Степновский	3	250	2506
11. Красногвардейский	16	232,9	5858
12. Апанасенковский	10	172	4501
13. Новоселицкий	4	170	2092
14. Кировский	7	138	5250
15. Минераловодский	11	101,3	2219,2

продолжение таблицы 1.14

1	2	3	4
16. Предгорный	22	90,3	1533
17. Георгиевский	7	88,7	380,2
18. Буденновский	5	83,8	899,5
19. Кочубеевский	20	80,3	2912
20. Ипатовский	10	60,7	2309
2 1. Карачаево-Черкесская Республика	26	60,4	1408
22. Курский	2	55,6	370
23. Андроповский	15	40,8	1101,1
24. Левокумский	1	10,2	40,0
25. Арзгирский	2	4,8	341
ИТОГО	536	8596,36	161786,8

Таблица 1.16 – Данные по категориям сложности инженерно-геологических условий [45,

46]

Факторы	I (простая)	II (средней сложности)	III (сложная)
1	2	3	4
Условия	Площадка (участок) в	Площадка (участок) в	Площадка (участок) в
геоморфологии	пределах одного		пределах нескольких
			геоморфологических
			элементов разнога генезиса.
	l =	генезиса. Поверхность	
	нерасчлененная	слабо расчлененная	расчлененная
	<u> </u>	<u> </u>	Более 4-х различных по
сфере		по литологии слоев,	
взаимодействи	залегающих	залегающих наклонно	Линзовидное залегание слоев. Значительная степень
	слабо наклонно (уклон	Существенное	неоднородности по
средой	не более 0,1).		показателям свойств
			грунтов, изменяющихся в
		грунтов в плане или по	
	степень		Скальные грунты перекрыты
		грунты имеют	1 5
			Имеются разломы разного
	грунтов, закономерно	_	порядка
	изменяющихся в плане	нескальными грунтами	
	и по глубине.	T .	1
			Горизонты подземных вод не
в сфере	отсутствуют или	выдержанных горизонтов подземных	выдержаны по простиранию
			неоднородным химическим
геологической		· · · · · · · · · · · · · · · · · · ·	составом или разнообразным
средой	*	химическим составом	загрязнением.
	химическим составом	или обладающих	
		напором и содержащих	
		загрязнение	

продолжение таблицы 1.16

1	2	3	4
Отрицательные	Нет	Имеют ограниченное	Имеют широкое
инженерно-		распространение и	распространение и
геологические		(или) не оказывают	оказывают решающее
И		существенного влияния	влияние на выбор проектных
геологические		на выбор проектных	решений, строительство
процессы		решений	объектов
Специфически	Нет	Имеют ограниченное	Имеют широкое
е грунты в		распространение и	
сфере		(или) не оказывают	оказывают основное влияние
взаимодействи		особого влияния на	на выбор проектных
я строений с		выбор проектных	решений, строительство и
геологической		решений,	эксплуатацию объектов
средой		строительство и	
		эксплуатацию объектов	
Техногенные	Малые, и могут не	Практически не влияют	Усложняют производство
воздействия и	учитываться при	на выбор проектных	инженерно-геологических
изменения	инженерно-	решений	изысканий в части
освоенных	геологических		увеличения объемов работ
территорий	изысканиях и		
	проектировании		

Приложение Г

Рисунок 1.1 – Бассейновая геосистема Ставропольского края

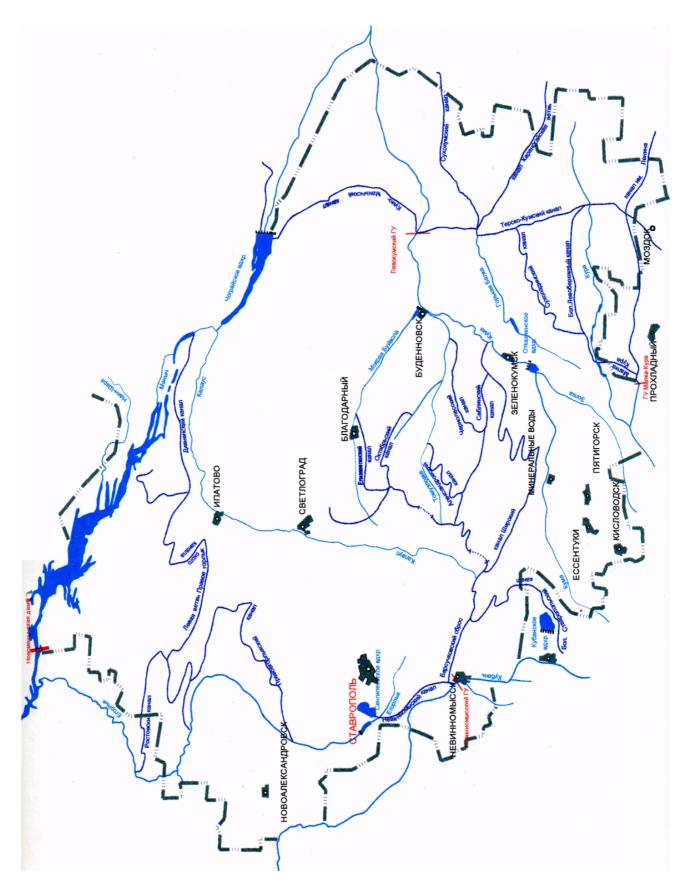


Рисунок 1.2 – Гидрографическая сеть бассейновых геосистем Ставрополья [45, 46]

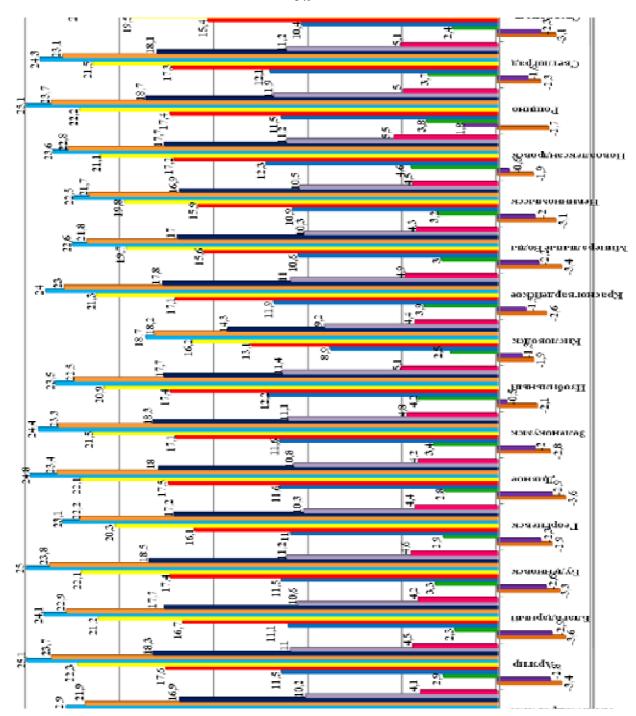


Рисунок 1.3 — Средняя месячная и годовая температура воздуха в пространственных пределах бассейновых геосистем Ставропольского края [45, 46]

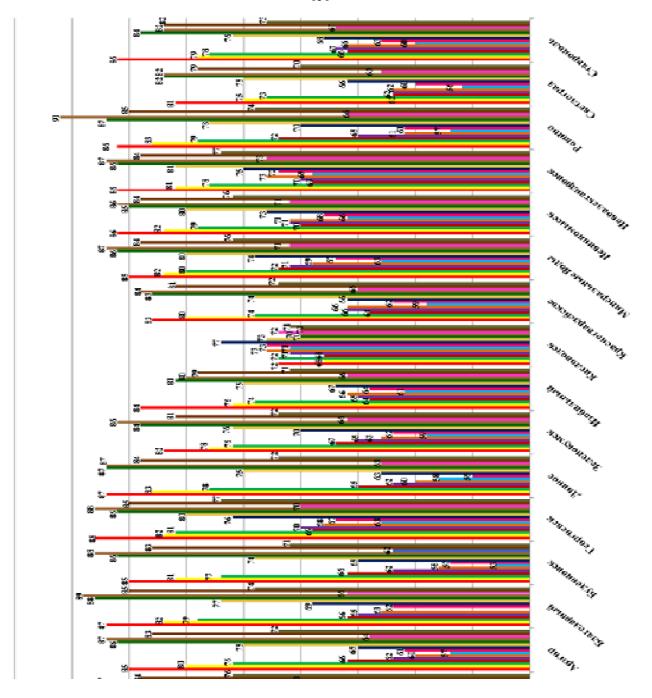


Рисунок 1.4 — Средняя месячная и годовая влажность воздуха (%) в пространственных пределах бассейновых геосистем Ставропольского края [45, 46]

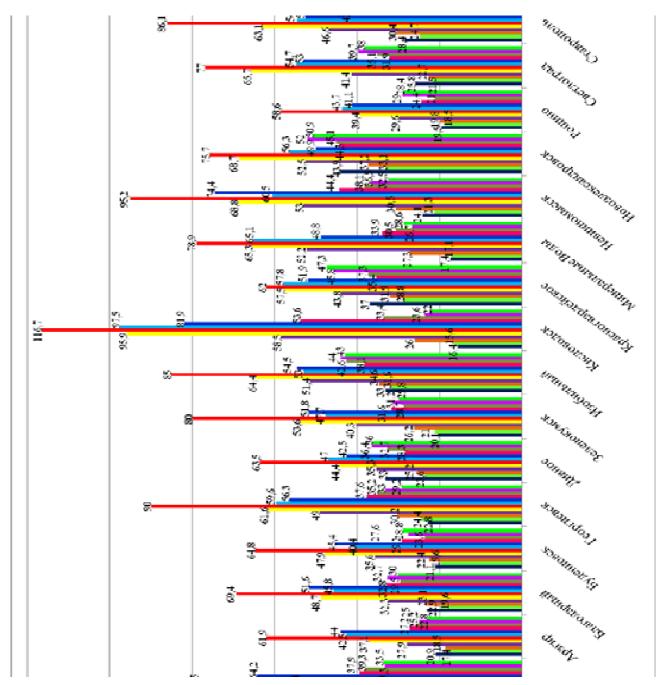


Рисунок 1.5 — Среднее месячное и годовое количество осадков (%) на территории Ставропольского края [45, 46]

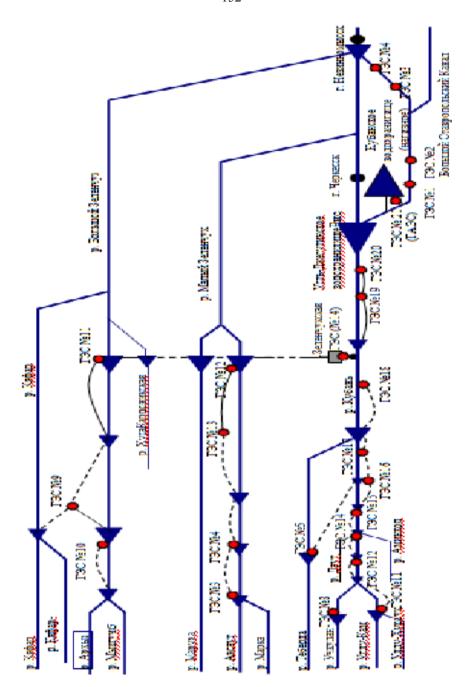


Рисунок 1.6 – Бассейновая геосистема Верхней Кубани [45, 46]

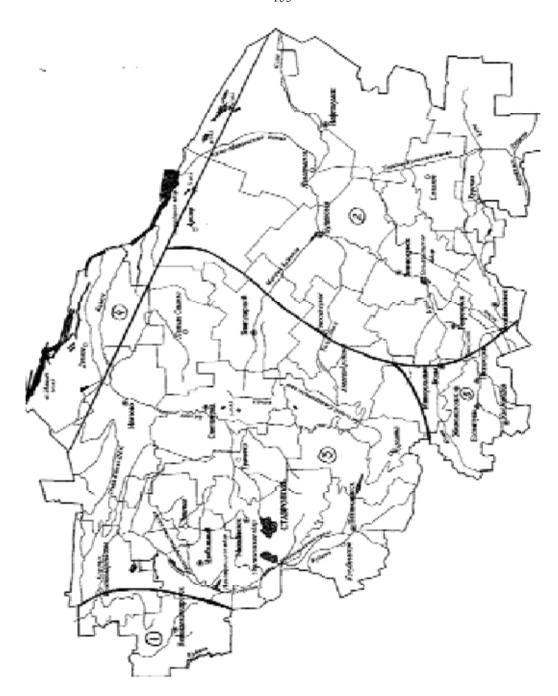


Рисунок 1.11 — Схема структурно-гидрологического районирования бассейновых геосистем Ставропольского края [45, 46]

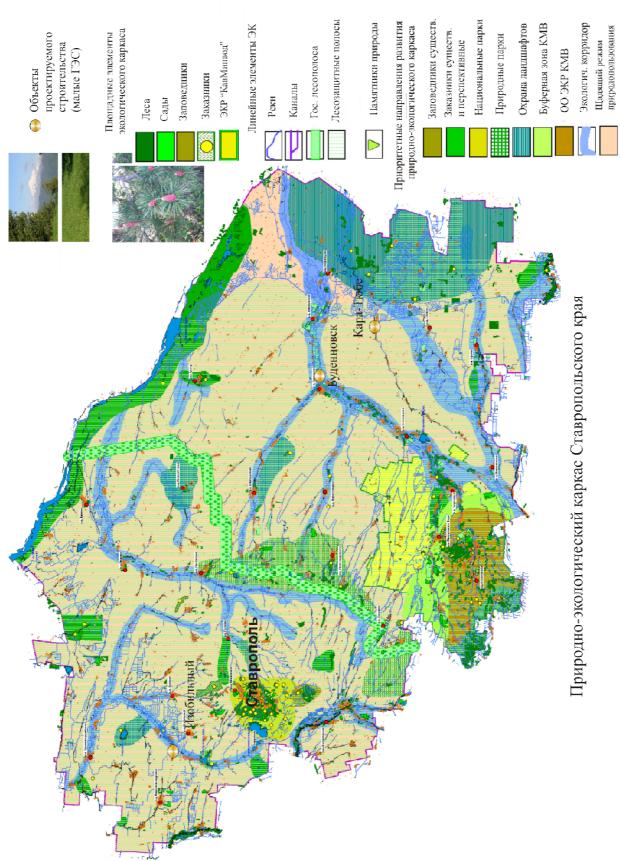


Рисунок 1.13 — Карта-схема природно-экологического каркаса бассейновых геосистем Ставропольского края [45, 46]

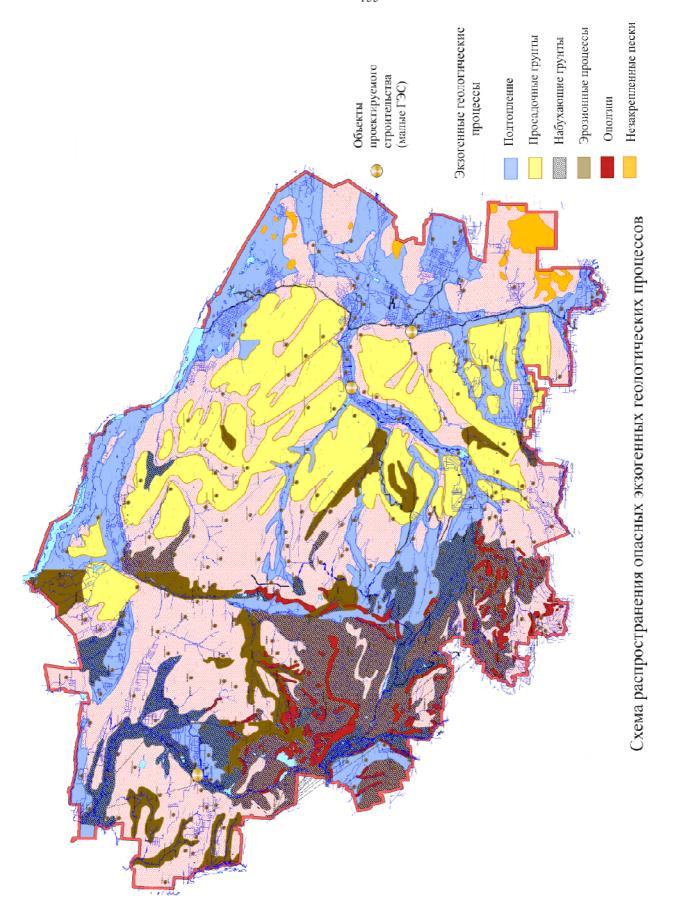


Рисунок 1.14 – Карта-схема распространения опасных экзогенных геологических процессов [45,

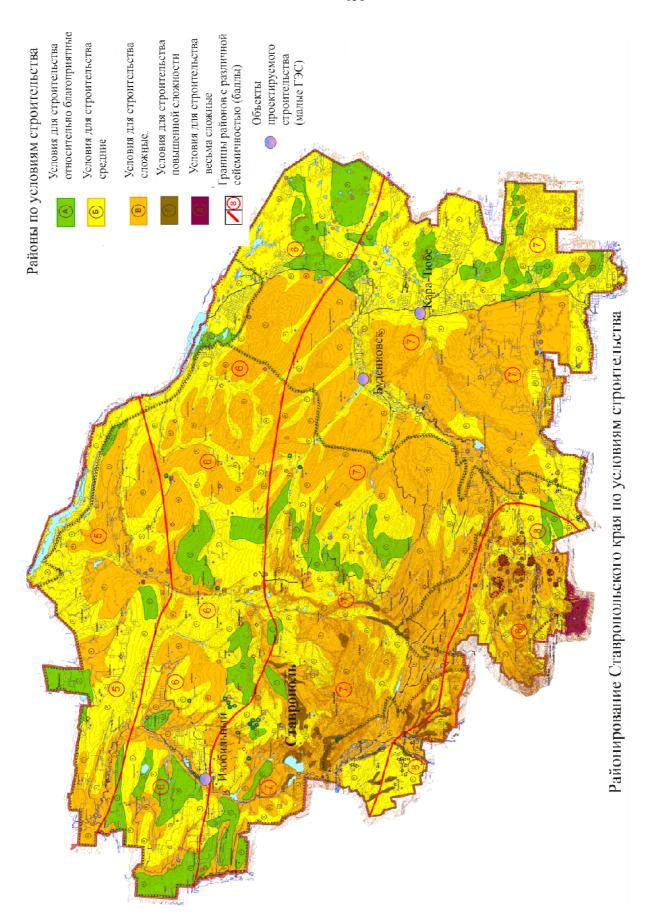


Рисунок 1.15 – Карта-схема районирования бассейновых геосистем Ставропольского края по условиям строительства [45, 46]

Таблица 2.3 – Данные по источникам выбросов в атмосферу загрязняющих веществ при выполнении строительных работ [45, 46]

ыделения іх веществ та	та ика ов, м етр ый) устья і, м		смес	Параметры газовоздушной смеси на выходе из источника выбросов			д ства	эосы яющих тв, г/с				
Источник выделения загрязняющих веществ	Высота источника выбросов, м	Диаметр (эффективный) устья трубы, м	скорость м/с	расход м ³ /с	Температура ⁰ С	Наименование вещества	Код вещества	Выбросы загрязняющих веществ, г/с				
1	2	3	4	5	6	7	8					
						двуокись азота	0301	0,194				
						азота оксид	0304	0,032				
						окись углерода	0337	0,197				
Бульдозер	3 м	0,06 м	190,63	0,539	450	сера диоксид	0330	0,0347				
						углеводо роды	2732	0,096				
										сажа	0328	0,017
							бенз(а)пи рен	0703	0,4x10 ⁻⁶			
						формаль дегид	1325	0,004				
						двуокись азота	301	0,270				
						окись углерода	337	0,271				
Двигатель						сера диоксид	330	0,048				
внутреннего сгорания	3 м	0,06 м		углеводо роды	2732	0,132						
ЯМЗ-236 (подъемный		•	ĺ	, ,		сажа	328	0,024				
(подъемныи кран)						бенз(а)пи рен	703	5,5x10 ⁻⁷				
						формаль	1325	0,0055				
						азота оксид	304	0,043				

продолжение таблицы 2.3

1	2	3	4	5	6	7	8	9			
						двуокись азота	0301	0,105			
			азота оксид	0304	0,017						
						окись углерода	0337	0,115			
Экскаватор	3 м	0,06 м	95,14	0,269	450	сера диоксид	0330	0,016			
						углеводо роды	2732	0,060			
						сажа	0328	0,012			
									бенз(а)пи рен	0703	2,1x10 ⁻⁷
						формаль дегид	1325	0,003			
OTENITUĂ									оксид железа	0123	0,018
Открытый сварочный пост	2,0	$5,0 \text{ m}^2$	0,2002	0,393	240	марганец					
	2,0 3,0 M	2,0	· · · · · · · · · · · · · · · · · · ·	0,373	0,575 270	и его соединен	0143	0,0001			
						RИ					

Таблица 3.1 – Данные по проведению лабораторных исследований [45, 46]

		Измеря					
		емая	Единиц	Допуст		Davias cassers	
$N_{\underline{0}}$	Объект	величин	a	имая	Интервал	Рекомендуе мый метод	Нормативный
Π/Π	измерений	а или	измерен	погреш	измерения		документ
		парамет	ИЯ	ность		измерения	
		p					
				ораторные	-		
	Xı			воды и во		кек из почво-г	
6		Вкус	балл	-	1-5	Органо-	ГОСТ- 3351-74
		воды				лептичес-	
		2				кий	70 CT 22 1 7 1
7		Запах	балл	-	1-5	Органо-	ГОСТ - 3351-74
0		TT	~		0.70	лептич.	FOCT 2251.74
8		Цвет	балл	-	0 - 70	Колори-	ГОСТ - 3351-74
0		M	/-		0.1	метрический	ГОСТ - 3351-74
9		Мутнос	мг/л		0,1 -	Колори-	1001 - 3351-74
10		ть	ow will	0,1	0-14	метрич.	ГОСТ - 3351-74
10		pН	ед. рН	0,1	0-14	Потенциоме	1001 - 3331-74
11		Окисляе	мг О2/л		0,01 и	тр. объемный	ГОСТ-
11		МОСТЬ	M1 O ₂ /J1		более	ООБСМНЫЙ	23268.12–78
12		Жест-	МΓ-	8%	5 - 1000	объемный	ΓΟCT- 23268.3-
12		кость	экв/л	070	3 1000	ООВСМПЫИ	78
13		Сухой	мг/л	83%	менее 30	Весовой	ГОСТ- 18164-
		остаток	1/11/01	56%	30-49	2002011	72
				42%	50-99		
				28%	100-299		
				14%	300 и		
					более		
14		НСО3и	ммоль/л	83%	менее 0,30	объемный	ГОСТ- 23268.3-
		CO ₃ -		56%	0,3-0,49		78
		ионы		42%	0,5-0,99		
				28%	1,0-1,99		
				14%	2,0-4,99		
				8%	5 и более		
15		Сульфат	ммоль/л	83%	менее 0,30	весовой	ГОСТ- 4389-72
		– ион		56%	0,3-0,49		
				42%	0,5-0,99		
				28%	1,0-1,99		
				14%	2,0-4,99		
				8%	5 и более		
16		Кальций	ммоль/л	83%	менее 0,30	объемный	ГОСТ- 232685-
				56%	0,3-0,49		78
				42%	0,5-0,99		

продолжение таблицы 3.1

		1		1	1	
			28%	1,0-1,99		
			14%	2,0-4,99		
1.7	3.6	,	8%	5 и более	, , , , , , , , , , , , , , , , , , ,	EO CE 222 (0.2
17	Магний	й ммоль/л	83%	менее 0,30	объемный	ГОСТ-23268.3-
			56%	0,3-0,49		78
			42%	0,5-0,99		
			28%	1,0-1,99		
			14%	2,0-4,99		
1.0	***	,	8%	5 и более		FO CE 10 15 50
18	Хлорид	ц ММОЛЬ/Л	83%	менее 0,30	объемный	ГОСТ-4245-72
	Ы		56%	0,3-0,49		
			42%	0,5-0,99		
			28%	1,0-1,99		
			14%	2,0-4,99		
			8%	5 и более		
19	Натрий		83%	менее 0,30	пламенно-	ГОСТ-23268.6-
	+	дм3	56%	0,3-0,49	фотометриче	85
	Калий		42%	0,5-0,99	ский	
			28%	1,0-1,99	(расчет.)	
			14%	2,0-4,99		
			8%	5 и более		
20	Нитра	мг/л	83%	менее 5,0	колориметри	ГОСТ-18826-73
	Ы		42%	5,0-9,9	Ч.	
			28%	10-29		
			14%	30 и		
				более		
21	Ион	мг/л	83%	менее 0,1	фотометриче	ГОСТ-4192-82
	аммоні	1	42%	0,1-0,5	ский	
	R		28%	0,5-1,0		
			14%	более 1,0		
22	Железо		83%	менее 0,1	колори-	ГОСТ-4011-72
	общее		28%	более 0,1	метрич.	
23	Маргал	н мг/л	83%	менее	колори-	ГОСТ-4974-72
	ец			0,05	метрич.	
			42%	0,05-0,099	-<<-	
			28%	0,1 и	атомно-	
				более	абсорбц	
24	Мышь	я мг/л	83%	менее	колори-	ГОСТ-4152-72
	К			0,02	метрич.	
			28%	0,02-0,049		
			14%	0,05 и		
				более		
25	Алюми	- мг/л	83%	менее 0,2	колори-	ГОСТ-18165-81
	ний		42%	0,2-0,39	метрич.	
			28%	0,4 и		
				более		
26	Фтор	мг/л	83%	менее 0,3	колори-	ГОСТ-4386-81
			42%	0,3-0,49	метрич.	

продолжение таблицы 3.1

				1	T	,
			28%	0,5-0,99		
			14%	1,0 и		
				более		
27	Медь	${ m M}\Gamma/{ m J}$	83%	менее	колори-	ГОСТ-4388-72
				0,05	метрич.	
			42%	0,05-0,49		
			28%	0,5 и		
				более		
28	Цинк	$M\Gamma/\Pi$	83%	менее	колори-	ГОСТ-19293-72
				0,05	метрич.	
			42%	0,05-0,49		
			28%	0,5 и		
				более		
29	Молиб-	мг/л	83%	менее	колори-	ГОСТ-18308-72
	ден			0,05	метрич.	
			42%	0,05-0,49	1	
			28%	0,5 и		
				более		
30	Свинец	мг/л	83%	менее	колори-	ГОСТ-18293-72
				0,02	метрич.	
			42%	0,02 и	1	
				более		
31	Литий	мг/л	83%	менее	Пламен-но-	Методы
				0,05	фо-	анализа
			42%	0,05-0,19	тометрическ	природных вод.
			28%	0,2 и	ий.	Недра, 1970.
				более		_
32	Хром	мг/л	83%	менее	колори-	Методы
				0,05	метрич.	анализа
			42%	0,05-0,099	_	природных вод.
			28%	0,1 и		Недра, 1970.
				более		
33	Серебр	мг/л	83%	менее	колори-	ГОСТ-18293-82
	0			0,05	метрич.	
			42%	0,05-0,49	_	
			28%	0,5 и		
				более		
34	Фенолы	мг/л	83%	0,001-0,05	экстрак-	ГОСТ-26449.1-
			42%	более	ционно-	85
				0,05	фото-метрич.	
35	Нефте-	мг/л	83%	0,01-0,1	весовой	ГОСТ –
	продукт		42%	более 0.1		26449.1-85
	Ы					
36	СПАВ	мг/л	83%	0,01-0,1	экстрак-	Методы
			42%	более	ционно-	анализа
				0,01	фотомет-	сточных вод.
			42%	более	рический	Химия, 1984
				0,001	•	·

Таблица 3.2 – Данные о показателях по охране атмосферного воздуха в пространственных пределах бассейновых геосистем Ставрополья [45,46]

	2012	2013	2014	2015	2016
Количество предприятий,					
имеющих выбросы	283	312	371	404	410
Количество источников выбросов					
загрязняющих веществ	18719	24130	25841	29873	31133
в том числе:					
организованных	12401	16209	18394	21458	20679
Уловлено и обезврежено вредных					
веществ, тыс. тонн	103.0	72.4	70.4	68.9	82.5
в % к отходящим	57.2	49.1	49.1	49.9	51.9
Утилизировано вредных					
веществ, тыс. тонн	41.7	44.8	46.3	44.5	51.1
реществ, тыс. топп	11.7	11.0	10.5		01.1
в % к уловленным	40.5	61.9	65.8	64.7	61.9
D / V R GROSTOTTISM	10.2	01.5	00.0	0 1.17	01.7
Выброшено вредных веществ в					
в атмосферу, тыс. тонн	77.0	75.0	72.8	69.3	76.6
в том числе:	,,,,,	70.0	, 2.0	03.2	, 0.0
2 20.12 21.0020					
без очистки, тыс. тонн	73.8	71.6	69.7	66.3	73.3
oes o mermi, rise. rom	73.0	71.0	07.7	00.5	73.3
Из общего выброса:					
твердые вещества	4.5	5.0	5.1	5.8	6.6
провидения при		0.0	0.1	0.0	0.0
диоксид серы	4.4	5.0	9.8	2.2	4.9
Augustia cohm		2.0	7.0	2.2	
оксид углерода	11.5	12.7	10.6	11.0	12.0
опонд јигороди	11.3	12.1	10.0	11.0	12.0
оксид азота	24.5	24.3	23.4	22.6	25.9
ORVIIA USOTU	21.3	<u> </u>	<i>23.</i> F	22.0	25.7
углеводороды (без ЛОС)	21.1	18.0	19.0	21.7	21.9
утловодороды (осэ лос)	41.1	10.0	17.0	41./	41.7

Таблица 3.3 – Данные по выбросам стационарных источников по городам и районам Ставрополья в 2014 году (единиц), приводящих к загрязнению атмосферы [45, 46]

	IC	Количество источников выбросов			
	Количество предприятий имеющих выбросы вредных веществ в атмосферу	всего	в т.ч. организованн ых	организованные в % к общему числу	
Всего по краю	410	31133	20679	66.4	
в том числе:					
Ставрополь	58	6677	5777	86.5	
Невинномысск	24	1615	1193	73.9	
Пятигорск	16	1573	342	21.7	
Минеральные Воды	20	913	439	48.1	
Кисловодск	7	171	98	57.3	
Железноводск	7	122	47	38.5	
Ессентуки	8	227	115	50.7	
Лермонтов	6	213	106	49.8	
Георгиевск	22	728	376	51.6	
Буденновск	13	1307	885	67.7	
Александровский	7	489	397	81.2	
Андроповский	5	166	79	47.6	
Апанасенковский	7	482	295	61.2	
Арзгирский	8	504	186	36.9	
Благодарненский	13	802	551	68.7	
Буденновский	3	88	27	30.7	
Георгиевский	14	736	468	63.6	
Грачевский	9	301	178	59.1	
Изобильненский	18	2746	2193	79.9	
Ипатовский	13	696	425	61.1	
Кировский	9	430	186	43.3	
Кочубеевский	18	830	194	23.4	
Красногвардейский	8	256	130	50.8	
Курский	5	149	54	36.2	
Левокумский	6	292	146	50.0	
Минераловодский	2	141	90	63.8	
Нефтекумский	7	533	326	61,2	
Новоалександровский	16	1445	1126	77.9	
Новоселицкий	4	230	123	53.5	
Петровский	11	1970	1804	91.6	
Предгорный	6	1490	538	36.1	
Советский	14	707	323	45.7	
Степновский	2	28	24	85.7	
Труновский	6	468	332	70.9	
Туркменский	3	127	108	85.0	
Шпаковский	15	1481	998	67.4	

Таблица 3.4 – Данные по выбросам загрязняющих веществ атмосферу по видам деятельности (тысяч тонн), отходящих от стационарных источников [45, 46]

	2015	2016
Всего по краю	69.252	76.616
из них по видам экономической деятельности:		
сельское хозяйство, охота и лесное хозяйство	1.121	1.829
добыча полезных ископаемых	6.863	9.237
в том числе:		
добыча топливно-энергетических полезных ископаемых	6.256	8.624
добыча полезных ископаемых, кроме топливно-энергетических	0.606	0.613
обрабатывающие производства	13.930	13.930
из них:		
производство пищевых продуктов, включая напитки, и табака	2.172	1.965
целлюлозно-бумажное производство; издательско-полиграфическая	0.009	0.006
химическое производство	9.212	9.427
производство прочих неметаллических минеральных продуктов	1.609	1.716
металлургическое производство и производство готовых металлических изделий	0.074	0.097
производство транспортных средств и оборудования	0.234	0.174
производство и распределение электроэнергии, газа и воды	26.022	32.077
транспорт и связь	17.900	16.481
операции с недвижимым имуществом, аренда и предоставление услуг	0.503	0.487
предоставление прочих коммунальных, социальных и персональных услуг	0.826	0.597

Доминирующими отраслями хозяйственной деятельности являются – производство электроэнергии и транспорт.

Таблица 3.5 – Данные по выбросам веществ по городам и районам Ставрополья (тысяч тонн), загрязняющих атмосферу

	2015	2016
1	2	3
Всего по краю	69.252	76.616
в том числе:		
Ставрополь	4.164	4.443
Невинномысск	12.939	14.162
Пятигорск	1.543	1.282
Минеральные Воды	1.188	1.458
Кисловодск	0.683	0.549
Железноводск	0.111	0.097
Ессентуки	0.572	0.593
Лермонтов	0.635	0.614
Георгиевск	0.910	0.593

1	2	3
Буденновск	4.776	4.788
Александровский	0.090	0.139
Андроповский	0.472	0.525
Апанасенковский	0.087	0.205
Арзгирский	0.078	0.089
Благодарненский	0.707	0.760
Буденновский	0.094	0.065
Георгиевский	1.612	1.661
Грачевский	0.093	0.485
Изобильненский	20.903	24.763
Ипатовский	1.124	0.813
Кировский	1.037	0.670
Кочубеевский	1.069	1.692
Красногвардейский	0.504	0.828
Курский	0.185	0.736
Левокумский	0.098	0.103
Минераловодский	0.213	0.112
Нефтекумский	7.366	8.389
Новоселицкий	0.104	0.085
Новоалександровский	3.094	1.750
Петровский	0.367	1.681
Предгорный	0.304	0.475
Советский	0.484	0.475
Степновский	0.064	0.020
Труновский	0.295	0.306
Туркменский	0.154	0.133
Шпаковский	1.136	1.080

Таблица 3.6 – Данные по выбросам в атмосферу более загрязняющих веществ по городам и районам в 2016 году (тысяч тонн) [45, 46]

	Твердые вещества	Диоксид серы	Оксид углерода	Оксид азота	Углеводороды, включая ЛОС
1	2	3	4	5	6
Всего по краю	6.560	4.907	11.984	25.882	25.609
в том числе:					
Ставрополь	0.258	0.002	1.459	1.294	1.363
Невинномысск	2.022	1.228	1.443	6.655	1.702
Пятигорск	0.089	0.084	0.441	0.379	0.225
Минеральные Воды	0.183	0.010	0.482	0.228	0.544
Кисловодск	0.008	0.010	0.240	0.214	0.075
Железноводск	0.002	0.000	0.049	0.031	0.015
Ессентуки	0.011	0.001	0.264	0.182	0.134

1	2	3	4	5	6
Лермонтов	0.014	0.001	0.005	0.089	0.469
Георгиевск	0.202	0.003	0.169	0.083	0.116
Буденновск	0.107	0.106	2.079	0.945	1.528
Александровский	0.065	0.002	0.017	0.007	0.044
Андроповский	0.004	-	0.053	0.014	0.452
Апанасенковский	0.137	0.002	0.004	0.002	0.052
Арзгирский	0.030	0.000	0.011	0.006	0.034
Буденновский	0.002	0.000	0.002	0.002	0.059
Благодарненский	0.189	0.002	0.198	0.100	0.248
Георгиевский	0.215	0.126	0.661	0.357	0.280
Грачевский	0.436	0.003	0.015	0.007	0.024
Изобильненский	0.258	2.972	1.293	13.245	6.976
Ипатовский	0.470	0.031	0.115	0.042	0.146
Кировский	0.288	0.019	0.047	0.021	0.292
Кочубеевский	0.460	0.091	0.164	0.060	0.876
Красногвардейский	0.014	0.003	0.307	0.273	0.231
Курский	0.110	0.066	0.080	0.020	0.455
Левокумский	0.008	0.000	0.011	0.008	0.076
Минераловодский	0.010	0.000	0.021	0.005	0.075
Нефтекумский	0.053	0.005	1.340	0.558	6.381
Новоалександровский	0.156	0.014	0.258	0.766	0.510
Новоселицкий	0.054	0.002	0.009	0.002	0.014
Петровский	0.070	0.072	0.067	0.028	1.433
Предгорный	0.015	0.000	0.177	0.055	0.195
Советский	0.139	0.043	0.145	0.043	0.097
Степновский	0.000	-	0.006	0.005	0.009
Труновский	0.097	0.000	0.026	0.008	0.150
Туркменский	0.002	-	0.001	0.000	0.129
Шпаковский	0.383	0.009	0.325	0.146	0.194

Таблица 3.7 – Данные по фиксации и нейтрализации загрязняющих атмосферу веществ по видам экономической деятельности в 2016 году (тысяч тонн [45,46]

	обезвреже	пено и но вредных еств		ировано цих веществ
	Фактическ	в % к	Фактическ	в % к
	и, тыс.	отходящи	и, тыс. тонн	уловленны
	тонн	M	и, тыс. тонн	M
Всего по краю	82.542	51.9	51.125	61.9
из них по видам экономической				
деятельности:				
сельское хозяйство, охота и лесное хозяйство	0.701	27.7	0.261	37.3

	0.100	1 1	0.061	(0.0
добыча полезных ископаемых	0.102	1.1	0.061	60.0
в том числе:				
добыча топливно-энергетических полезных				
ископаемых		-	-	-
добыча полезных ископаемых, кроме				
топливно-энергетических	0.102	14.3	0.061	60.0
обрабатывающие производства	53.919	79.5	31.769	58.9
из них:				
производство пищевых продуктов, включая				57.1
напитки, и табака	18.946	90.6	10.819	37.1
целлюлозно-бумажное производство;				
1				
издательско-полиграфичес-кая деятельность	0.004	38.1	-	-
химическое производство	27.685	74.6	16.692	60.3
производство прочих неметаллических				
минеральных продуктов	6.550	79.2	4.008	61.2
металлургическое производство и				
производство готовых металлических				
изделий	0.019	16.3	0.014	75.5
производство транспортных средств и				
оборудования	0.077	30.6	0.001	1.4
производство и распределение				
электроэнергии, газа и воды	0.148	0.5	0.117	79.3
транспорт и связь	12.232	42.6	7.070	57.8
операции с недвижимым имуществом, аренда				
и предоставление услуг	0.001	0.2		
пропосторновно прошем комалистич				
предоставление прочих коммунальных,				
социальных и персональных услуг	2.984	83.3	0.009	0.3

Таблица 3.8 – Данные по фиксации и нейтрализации загрязняющих атмосферу веществ по городам и районам края в 2016 году (тысяч тонн) [45, 46]

	Уловленс	вредных	Утилизировано вредных		
	вещ	еств	вещ	еств	
	всего	в % к	всего	в % к	
	вссто	отходящим	вссто	уловленным	
Всего по краю	82.542	51.9	51.125	61.9	
в том числе:					
Ставрополь	5.470	55.2	5.019	91.7	
Невинномысск	26.236	64.9	16.696	63.6	
Пятигорск	2.970	69.9	0.069	2.3	
Минеральные Воды	3.290	69.3	0.712	21.6	
Кисловодск	0.251	31.4	0.005	1.9	

Железноводск	0.058	37.4	-	-
Ессентуки	-	-	-	-
Лермонтов	0.256	29.5	0.223	87.1
Георгиевск	8.102	93.2	0.160	2.0
Буденновск	3.810	44.3	1.756	46.1
Александровский	0.429	75.5	0.377	87.8
Андроповский	0.102	16.3	0.102	100.0
Апанасенковский	1.071	84.0	0.724	67.6
Арзгирский	0.088	49.6	0.088	100.0
Буденновский	0.003	4.6	0.003	100.0
Благодарненский	1.215	61.5	1.215	100.0
Георгиевский	1.154	41.0	0.154	100.0
Грачевский	6.364	92.9	6.364	100.0
Изобильненский	8.105	24.7	7.545	93.1
Ипатовский	1.057	56.5	0.356	33.7
Кировский	1.879	73.7	0.679	36.1
Кочубеевский	0.036	2.1	0.032	88.9
Левокумский	0.056	35.3	0.056	100.0
Красногвардейский	0.007	0.8	0.007	100.0
Курский	0.125	14.5	-	-
Минераловодский	0.086	43.6	0.002	2.1
Нефтекумский	0.319	3.7	0.319	100.0
Новоалександровский	1.990	53.2	0.145	7.3
Новоселицкий	0.624	88.0	-	-
Петровский	0.822	32.8	0.822	100.0
Степновский	-	-	-	-
Советский	1.445	75.2	1.431	99.1
Предгорный	0.006	1.3	0.006	100.0
Труновский	0.672	68.7	0.672	100.0
Туркменский	0.001	0.3	0.001	99.6
Шпаковский	4.442	80.4	4.387	98.8

Таблица 3.23 — Данные по сбросу в поверхностные водные объекты загрязняющих веществ в составе сточных вод 2 [45, 46]

Количество сбрасываемых загрязнителей	2012	2013	2014	2014	2016
Азот аммонийный, тонн	246.6	273.3	303.3	327.6	285.2
Фосфор общий, тонн	273.7	265.3	260.3	249.0	234.1
Хлориды, тыс. тонн	21.4	19.6	24.9	22.8	18.8
Сульфаты, тыс. тонн	57.9	51.9	61.6	57.0	47.1
Сухой остаток, тыс. тонн	186.8	181.2	195.9	178.1	171.9
Взвешенные вещества, тыс. тонн	22.3	3.5	3.9	3.8	3.8
Нефтепродукты, тыс. тонн	0.06	0.02	0.02	0.01	
БПК полный, тыс. тонн	1.3	1.5	1.4	1.4	

²по данным Отдела водных ресурсов по Ставропольскому краю Кубанского бассейнового водного управления

Нитраты, тонн	7259.8	6865.3	7722.0	5279.4	5255.4
Железо, тонн	19.3	22.6	26.2	26.2	24.6
Медь, тонн	0.9	1.0	0.7	0.7	0.5
Цинк, тонн	2.1	1.7	1.5	1.5	1.3
Никель, тонн	0.4	0.7	0.8	0.2	0.2
Хром, тонн	0.1	0.2	0.3	0.2	0.0
Алюминий, тонн	5.6	4.9	3.3	6.9	5.0
Магний, тонн	3.3	17.4	18.6	7.6	7.7
Нитриты, тонн	60.5	75.5	82.0	58.7	54.5
Фтор, тонн	14.3	13.7	12.9	11.3	10.9

Таблица 3.24 – Данные по водоснабжению населенных пунктов Ставропольского края [45, 46]

	2012	2013	2014	2015	2016
Число населенных пунктов, имеющих					
централизованные водопроводы (на					
конец года):					
городов	19	19	19	19	19
в процентах от их общего числа	100	100	100	100	100
поселков городского типа	7	7	7	7	7
в процентах от их общего числа	100	100	100	100	100
сельских населенных пунктов	167	167	168	404	427
в процентах от их общего числа	23	23	23	55	58
Одиночное протяжение уличной					
водопроводной сети (на конец					
года) – всего, км	13001.6	13020.4	13482.2	12642.6	12566.9
в том числе:					
в городской местности	4593.7	4423.7	4416.8	4598.9	4654.3
в сельской местности	8407.9	8596.7	9065.4	8043.7	7912.6
Установленная производственная					
мощность водопроводов – всего, тыс.					
м ³ в сутки	1652.1	1611.2	1638.5	1568.1	1503.2
в том числе:					
в городской местности	1222.3	1190.1	1184.7	1170.1	1123.4
в сельской местности	429.8	421.1	451.1	398.0	379.8
Среднесуточная подача воды от					
общей мощности водопроводов –					
всего, процентов	64.2	62.8	61.5	62.1	62.7
в том числе:					
в городской местности	74.4	72.1	72.3	70.8	65.8
в сельской местности	35.1	36.6	33.5	36.6	34.1
Пропуск воды через очистные					
сооружения в общем объеме					
поданной воды, процентов	55.0	58.7	55.8	55.9	55.9
в том числе:					
в городской местности	57.5	58.8	59.1	60.3	59.7
в сельской местности	40.1	36.7	36.9	31.1	32.1

Отпуск воды своим потребителям за					
rog – всего, млн. m^3	174.3	170.7	162.2	155.3	151.3
в том числе:					
в городской местности	134.3	133.1	126.4	121.9	119.8
в сельской местности	40.0	37.6	35.8	33.4	31.5
Отпуск воды населению и					
бюджетнофинансируемым	158.0	135.4	124.5	118.1	112.9
организациям млн. м ³					
в том числе:					
в городской местности	121.0	102.7	94.2	89.7	86.2
в сельской местности	37.0	32.7	30.3	28.4	26.7
Отпуск воды населению и на					
коммунально-бытовые нужды в					
общем объеме отпуска воды,	54.1	48.3	45.7	45.6	44.1
процентов					
в том числе:					
в городской местности	48.6	43.0	40.5	40.3	38.9
в сельской местности	93.2	78.2	76.3	77.6	76.9
Среднесуточный отпуск воды в					
расчете на одного жителя – всего, л.	159	137	126	120	114
в том числе:					
в городской местности	217	184	169	160	153
в сельской местности	85	75	71	66	63

3.25 — Данные по канализационным системам в населенных пунктах Ставропольского края [45, 46]

	2012	2013	2014	2015	2016
Число населенных пунктов, имеющих канализацию, (на конец года):					
городов	19	19	19	19	19
в процентах от общего числа городов	100	100	100	100	100
поселков городского типа	7	7	7	7	7
в процентах от общего числа поселков городского типа	100	100	100	100	100
сельских населенных пунктов	63	63	63	64	64
в процентах от общего числа сельских населенных	9	9	9	9	9
ПУНКТОВ	9	9	9	9	9
Одиночное протяжение уличной канализационной сети					
(на конец года) – всего, км	1371.7	1311.4	1297.8	1278.4	1340.6
в том числе:					
в городской местности	1165.3	1113.4	1101.1	1089.4	1150.0
в сельской местности	206.4	198.0	196.7	189.0	190.6

продолжение таблицы 3.25

Использование мощности очистных					
сооружений канализации – всего,					
процентов	67.7	60.6	51.8	52.8	56.9
в том числе:					
в городской местности	70.9	63.1	53.7	54.9	59.3
в сельской местности	19.3	16.3	15.9	13.6	15.8
Пропуск сточных вод за год –					
всего, млн. м ³	269.6	252.7	246.2	227.2	215.6
в том числе:					
в городской местности	261.9	247.3	241.2	222.5	211.0
в сельской местности	7.7	5.3	5.0	4.7	4.6
Из общего объема пропуска сточных					
вод – пропуск через очистные					
сооружения – всего, млн. м ³	178.2	160.2	151.0	148.2	160.2
в том числе:					
в городской местности	175.0	157.9	148.7	146.3	157.8
в сельской местности	3.2	2.3	2.3	1.9	2.4
Пропуск сточных вод через очистные					
сооружения – всего, в процентах					
от общего объема	66.1	63.4	61.3	65.2	74.3
в том числе:					
в городской местности	66.8	63.8	61.7	65.7	74.8
в сельской местности	41.6	43.4	46.0	40.7	52.2