Bepl

ВЕРНИГОРА АНДРЕЙ АЛЕКСАНДРОВИЧ

АНИЛЫ МОНОТЕРПЕНОИДНЫХ КЕТОНОВ И ИХ ПРОИЗВОДНЫЕ: ОСОБЕННОСТИ СИНТЕЗА И ПРИМЕНЕНИЕ

1.4.3. Органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена на кафедре «Органическая химия» Федерального государственного бюджетного образовательного учреждения высшего образования «Волгоградский государственный технический университет».

Научный руководитель доктор химических наук, доцент

Бурмистров Владимир Владимирович.

Официальные оппоненты: Федоров Алексей Юрьевич,

член-корреспондент РАН, доктор химических наук, ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского», кафедра органической

химии, заведующий;

Аксенова Инна Валерьевна,

доктор химических наук, профессор, ФГАОУ ВО «Северо-Кавказский федеральный университет», кафедра физической химии

химического факультета, заведующая.

Ведущая организация Федеральное государственное бюджетное

образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова»,

г. Москва.

Защита диссертации состоится «17» декабря 2025 г. в 13:00 час. на заседании диссертационного совета 24.2.282.01, созданного на базе Волгоградского государственного технического университета по адресу: 400005, г. Волгоград, пр. им. Ленина, 28, ауд. 209.

С диссертацией можно ознакомиться в информационно-библиотечном центре Волгоградского государственного технического университета и на официальном сайте www.vstu.ru по ссылке https://www.vstu.ru/upload/iblock/b8f/b8f866d5fb2b7ab4a1ea27d4696594a6.pdf.

Автореферат разослан «____» _____ 2025 г.

Ученый секретарь диссертационного совета к.х.н., доцент

Дрябина Светлана Сергеевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Функциональные производные природных соединений являются перспективными прдуктами для нужд промышленности и медицины. Благодаря доступности, особенностям строения, наличию хиральных центров, а также нативной фармакологической представляют активности, монотерпены монотерпеноиды перспективные соединения дальнейших исходные ДЛЯ модификаций, которые могут быть получены из возобновляемого сырья. В контексте настоящей работы в качестве исходных соединений были выбраны оптически активные бициклические кетоны каркасного строения – камфора и фенхон.

Подкласс оснований Шиффа, синтезируемых из анилина производных и карбонильных соединений, называют анилами. камфоры и фенхона обладают рядом ценных свойств, обусловливающих возможность их использования в разнообразных отраслях промышленности и медицины. Некоторые из них были запатентованы в качестве функциональных добавок к эластомерам 1 , другие – проявили спектр ценных видов биологической активности доминирующими противовирусными c свойствами². В то же время анилы монотерпеноидных кетонов являются ключевыми промежуточными продуктами для синтеза *N*-арилзамещенных камфан- и фенхан-2-аминов, которые практически невозможно получить из соответствующих c использованием одностадийного кетонов восстановительного аминирования.

Ариламино-производные бициклических монотерпенов представляют значительный интерес для нужд медицины по двум причинам. Во-первых, в исходных анилов, они менее предрасположены гидролитическому распаду с образованием исходных кетонов и токсичных производных анилина. Это наиболее важно при рассмотрении этих веществ в качестве фармакологически активных соединений. Во-вторых, арилзамещенные камфан-И фенхан-2-амины представляют биоизостерические структурные аналоги хорошо известного отечественного актопротектора «Бромантана», но по причине замены фрагмента адамантана на бициклический терпеновый фрагмент, потенциально, будут обладать сниженной способностью вызывать лекарственную болезнь печени по аналогии перехода от «Римантадина» к «Дейтифорину»³.

Степень разработанности исследования. Современное состояние исследований анилов монотерпеноидных кетонов условно можно разделить на несколько направлений. Во-первых, это методы и подходы, пригодные для получения анилов камфоры и фенхона. Основная часть описанных в литературе анилов монотерпеноидных кетонов представлена производными камфана, однако известные методы их синтеза обладают различными недостатками. В отличие от производных камфана, данные по синтезу

¹ Пат. US 2211629, МПК C08К5/29; 1936.

² Sokolova A.S., Yarovaya O.I., Shernyukov A.V., et. al. // Europ. J. Med. Chem. 2015. Vol. 105. P. 263-273.

³ Тандура С.Н., Зарубаев В.В., Анфимов П.М., еt. al. // Антибиот. и химиотерап. 2013. Т. 58. № 1–2. С. 36-48.

анилов фенхона крайне ограничены: в открытой печати описаны лишь единичные примеры таких соединений. В первую очередь это связано с их ограниченной синтетической доступностью ввиду выраженного экранирования карбонильной группы.

Подходов к восстановлению анилов монотерпеноидных кетонов описано немного. Обычно для этих целей используется метод, основанный на применении $NaBH_4$ в сочетании с $NiCl_2 \cdot 6H_2O$ или $CoCl_2 \cdot 6H_2O$ в MeOH, который имеет ряд существенных недостатков (особенно, с позиции масштабирования). Кроме этого, неизвестна хемоселективность данного подхода в случае галогенированных производных анилина, равно как и вызывает известные сомнения диастереоселективность восстановления связи C=N.

Также стоит отметить, что данные о биологических свойствах N-(камфан-2-ил)- и N-(фенхан-2-ил)анилинов, являющихся продуктами восстановления соответствующих анилов, в открытой печати практически отсутствуют.

Цель работы заключается в разработке эффективного общего подхода к получению анилов пространственно-затрудненных кетонов и продуктов их восстановления, обладающих совокупностю ценных практических свойств.

Для достижения этой цели были поставлены следующие задачи:

- 1) исследование особенностей взаимодействия бициклических монотерпеноидных кетонов с первичными (гет)ариламинами;
- 2) сравнительная оценка эффективности восстановления анилов камфоры и фенхона с использованием нуклеофильных и электрофильных реагентов, а также водородом «в момент выделения» в присутствии катализатора (реакция Швенка-Папа);
- 3) обоснование практической полезности целевых веществ, на основании углубленного исследования их физико-химических и биологических свойств.

работы. Научная новизна Впервые ДЛЯ получения монотерпеноидных кетонов предложен общий способ, основанный на использовании катализатора $(i-PrO)_2Ti(OTf)_2 \cdot (i-PrOH)_2$, полученного *in situ* из (*i*-PrO)₄Ti И TfOH, что позволило получить целевые продукты воспроизводимыми высоким выходом чистотой. И систематическое исследование реакций восстановления N-(камфан-2-илиден)и N-(фенхан-2-илиден)анилинов.

Доказан общий характер подхода диастереоселективного восстановления с использованием системы « $NaBH_4-NiCl_2\cdot 6H_2O$ » для анилов камфоры и фенхона. Метод позволяет получать диастереомерно обогащённые продукты восстановления кратной связи C=N в мягких условиях с хорошим выходом.

Полученные анилы и продукты их восстановления — N-(камфан-2-ил)- и N-(фенхан-2-ил)анилины были впервые подвергнуты комплексным исследованиям биологической активности и прикладных свойств, обосновывающих их практическую ценность.

Теоретическая и практическая значимость. Впервые предложен эффективный общий способ получения анилов камфоры и фенхона, с выходом до 88%, заключающийся в конденсации соответствующих бициклических монотерпеноидных кетонов с (гет)ариламинами катализируемый комплексом $(i\text{-PrO})_2\text{Ti}(\text{OTf})_2\cdot(i\text{-PrOH})_2$, полученным *in situ* из $(i\text{-PrO})_4\text{Ti}$ и TfOH. В этой реакции $(i\text{-PrO})_4\text{Ti}$ сочетает функции растворителя и ковалентного дегидратирующего агента.

Проведено систематическое исследование реакции восстановления N-(камфан-2-илиден)- и N-(фенхан-2-илиден)анилинов. Наилучшие результаты достигаются при использовании системы «NaBH₄ – NiCl₂·6H₂O» в 95% EtOH. Исключение составляют галогенированные производные анилина, где наряду с восстановлением связи C=N происходит гидрогенолиз связи C-Hal. N-(камфан-2-илиден)анилины остаются стабильными к действию AlH_3 , $LiAlH_4$ и в условиях реакции Швенка-Папа. Восстановление порошкообразным Zn в AcOH сопровождается разложением исходного анила. Взаимодействие анилов камфоры с BH_3 , полученным $in\ situ$ из $NaBH_4$ и I_2 в виде комплекса с $T\Gamma\Phi^4$, с последующей кислотной обработкой, приводит к образованию смеси $3\kappa 3o$ - и $3\nu do$ -изомеров целевых аминов.

Было выявлено, что N-арилзамещенные камфан- и фенхан-2-амины обладают умеренной противовирусной активностью (показатели индекса селективности (SI) для 4 соединений составляют и выше 10); 2-{[(1R,2RS,4R)-камфан-2-ил]амино}пиридин активно подавлял рост Halobacterium salinarum, что является косвенным маркером его вероятной онколитической активности. В исследованиях нейротропной активности целевых соединений установлено, что N-[(1R,2R,4R)-Камфан-2-ил]-4-этиланилин оказывает умеренное анксиолитическое действие, без миорелаксирующего и амнезирующего эффектов.

Разработанные анилы монотерпеноидных кетонов перспективны как $У\Phi$ -абсорберы при получении изделий методом 3D-печати по технологии DLP. Кроме этого, некоторые продукты из ряда N-арилзамещенных камфан-2-аминов представляют собой альтернативу существующим компонентам резиновых смесей, повышающих их термоокислительную стабильность.

Методология и методы исследования. Методология работы заключается в разработке оригинальных и эффективных методов получения целевых соединений, позволяющих получать их с хорошим выходом и чистотой. Выделение и очистка продуктов осуществлялись методами экстракции, вакуумной перегонки, колоночной хроматографии. Для подтверждения химической структуры и чистоты полученных соединений в работе использовались современные физико-химические методы анализа: спектроскопия ЯМР на ядрах ¹H, ¹³C, в том числе гетероядерные ¹H-¹³C и гомоядерные ¹H-¹H корреляционные методики, масс-спектрометрия, включая масс-спектрометрию высокого разрешения, УФ-спектроскопия.

4

⁴ Prasad A. S. B., Kanth J. V. B., Periasamy M. // Tetrahedron. 1992. Vol. 48. P. 4623–4628.

Положения, выносимы на защиту:

- 1. Синтез N-(камфан-2-илиден)- и N-(фенхан-2-илиден)анилинов в условиях гомогенного катализа $(i\text{-PrO})_2\text{Ti}(\text{OTf})_2 \cdot (i\text{-PrOH})_2$, полученного $in\ situ$ из $(i\text{-PrO})_4\text{Ti}$ и TfOH.
- 2. Результаты исследования методов восстановления анилов монотерпеноидных кетонов с помощью LiAlH₄, AlH₃, «NaBH₄–I₂», «NaBH₄–NiCl₂·6H₂O» в спиртовой среде, порошком Zn в AcOH, реакции Швенка-Папа.
- 3. Результаты комплексных исследований биологических и прикладных свойств полученных *N*-(гет)арилзамещенных камфан-2- и фенхан-2-аминов и установление зависимости изученных свойств от химической структуры названных соединений.

Достоверность полученных результатов. Строение и чистота соединений, обсуждаемых в диссертационной работе, подтверждены использованием современных физико-химических методов анализа, а также независимой экспертной оценкой их биологической активности, широкой апробацией результатов.

Апробация работы. Основные полученные результаты представлялись на российских конференциях с международным участием: 5-я Российская конференция по медицинской химии с международным участием «МедХим-Россия 2021» (Волгоград, 2021); 82-я Международная научно-практическая конференция молодых учёных и студентов «Актуальные проблемы экспериментальной и клинической медицины» (Волгоград, 2024); Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2024» (Москва, 2024); VI Всероссийская конференция по органической химии (Москва, 2024).

Публикация результатов исследования. По материалам диссертации опубликовано 8 статей в научных журналах, входящих в список изданий рекомендованных ВАК РФ, 7 из которых относятся к индексируемым в международных базах данных, получены 6 патентов РФ, 4 тезиса докладов.

Личный соискателя вклад заключается осуществлении критического обобщения литературного поиска, научной анализа И информации по тематике работы, планировании и проведении всех химических экспериментов, выделении и очистке новых соединений и полупродуктов их получения, а также подтверждении химического строения продуктов с использованием результатов современных физико-химических методов анализа. Соискатель осуществлял работу по подготовке всех публикаций к печати, а также докладывал о результатах исследований на конференциях.

Структура и объем работы. Диссертация изложена на 184 страницах, содержит 22 рисунка, 11 таблиц, 43 схемы, включает введение, 3 главы, заключение, список литературы из 120 источников, 6 приложений.

Благодарности. Автор выражает благодарность за поддержку и обсуждение результатов: академику РАН, д.х.н. Новакову И.А. (ВолгГТУ) и д.х.н., к.фарм.н., профессору Навроцкому М.Б. (НТУ «Сириус»); за испытания опытных образцов: д.т.н., доценту Ваниеву М.А. и коллективу кафедры ХТПЭ

ВолгГТУ; за проведение биологических исследований: д.б.н. Тренину А.С. (НИИ по изысканию новых антибиотиков им. Г.Ф. Гаузе), д.б.н., члену-корреспонденту РАН Тюренкову И.Н. (ВолгГМУ); д.б.н., профессору Зарубаеву В.В. (Санкт-Петербургский НИИ эпидемиологии и микробиологии им. Пастера).

Работа выполнена при поддержке гранта Российского научного фонда № 22-13-20062 и гранта Администрации Волгоградской области по соглашению № 2 от 10.06.2022 г.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Глава 1 (литературный обзор) посвящена анализу литературных данных о способах получения целевых структур с использованием бициклических монотерпеноидных кетонов, анилинов и аминопиридинов в качестве исходных соединений. Проведен анализ литературных данных с точки зрения химических модификаций, а также рассмотрены ценные свойства полученных соединений. На основании анализа литературных источников был сделан вывод о том, что дальнейший поиск новых биологически активных соединений среди структурных аналогов отечественного препарата «Бромантана» является перспективным.

Глава 2 (обсуждение результатов) включает разработку и сравнительную оценку способов синтеза анилов терпеноидных кетонов, путем конденсации камфоры или фенхона с различными анилинами и 2-аминопиридином, а также - подбор условий проведения процесса, обеспечивающих получение целевых веществ с хорошим выходом и чистотой. Второй подраздел посвящен исследованию эффективных методов восстановления связи C=N в структуре анилов монотерпеноидных кетонов. В качестве отправных точек рассматриваются способы восстановления кратной связи C=N с использованием:

- 1. Нуклеофильного реагента комплексного гидрида щелочного металла (LiAlH₄);
- 2. Нуклеофильного реагента в присутствии полученного *in situ* гетерогенного катализатора (система «NaBH₄ NiCl₂·6H₂O»);
- 3. Электрофильных реагентов AlH_3 и BH_3 , полученных *in situ* (системы «LiAl H_4 H_2SO_4 », «NaB H_4 I_2 »);
 - 4. Водорода «в момент выделения» (цинковый порошок в AcOH);
- 5. Водорода «в момент выделения» в присутствии полученного *in situ* гетерофазного катализатора (система «Ni/Al-KOH») реакция Швенка-Папа.

Третий и четвертый подразделы посвящены потенциальным областям применения целевых веществ, основанным на комплексном исследовании их прикладных и биологических свойств.

2.1 Исследование синтеза анилов камфоры и фенхона

В рамках поиска наиболее эффективного подхода для получения анилов монотерпеноидных кетонов предварительно была проведена серия экспериментов с использованием различных

конденсирующих/азеотропобразующих агентов \mathbf{C} и кислотных катализаторов для реакций (+)-камфоры \mathbf{I} и (-)-фенхона \mathbf{II} с ариламинами $\mathbf{III-V}$ (схема 1, таблица 1). В качестве модельных ариламинов использовались: пространственно-затрудненный 2-этиланилин \mathbf{III} и гетероариламин — 2-аминопиридин \mathbf{VI} для их конденсации с (+)-камфорой \mathbf{I} ; а также незамещенный анилин \mathbf{V} для проведения реакции с (-)-фенхоном \mathbf{II} . Все опыты были проведены в одинаковых условиях i.

 \emph{i} . Мольные соотношения: **кетон** : **ArNH** $_2$: **C** (1 : 1.1 : 1.1), **kat.** 1.5 $\%_{mol}$, 175 $^{\circ}$ C, 10 ч где X = C, R = Et (**III**, **VI**); X = N, R = «-» (**IV**, **VII**)

Таблица 1 — Подбор конденсирующего / азеотроп-образующего агента и катализатора для реакции получения анилов монотерпеноидных кетонов

Опыт	Продукт	С (Конденсирующий агент / азеотропобразующий компонент)	kat.	Содержание продукта, % (согласно ГХ-МС)	Выход продукта, % ^а
Конденсация камфоры I с ариламином III					
1		PhMe	ZnCl ₂	8	6
2		PhMe	<i>p</i> -TsOH	16	_6
3		PhMe	H_2SO_4	10	_6
4		PhMe	TfOH	31	20
5		(EtO) ₄ Si	<i>p</i> -TsOH	87	70
6		(EtO) ₄ Si	H_2SO_4	85	72
7	VI	(EtO) ₄ Si	TfOH	60	52
8		(i-PrO) ₄ Ti	ZnCl ₂	23	15
9		(i-PrO) ₄ Ti	<i>p</i> -TsOH	40	31
10		(i-PrO) ₄ Ti	H_2SO_4	73	63
11		(i-PrO) ₄ Ti	$(i-PrO)_2Ti(OTf)_2 \cdot (i-PrOH)_2$	90	74
12		(i-PrO) ₄ Ti	_	22	14
13		_	TfOH	37	24
Конденсация камфоры I с ариламином IV					
14		(EtO) ₄ Si	<i>p</i> -TsOH	22	17
15		(EtO) ₄ Si	H_2SO_4	12	6
16	VII	(EtO) ₄ Si	TfOH	19	16
17		(i-PrO) ₄ Ti	H_2SO_4	83	67
18		(i-PrO) ₄ Ti	$(i-PrO)_2Ti(OTf)_2 \cdot (i-PrOH)_2$	87	71
Конденсация фенхона II с ариламином V					
19		(EtO) ₄ Si	H_2SO_4	18	10
20	VIII	(i-PrO) ₄ Ti	H_2SO_4	25	14
21		(i-PrO) ₄ Ti	(i-PrO) ₂ Ti(OTf) ₂ ·(i-PrOH) ₂	70	59

 $[\]overline{}^a$ После колоночной хроматографии на силикагеле, элюент – *t*-BuOMe : *н*-гептан (1 : 29, по объему)

⁶ Не выделялялся в чистом виде ввиду низкого содержания целевого продукта

В очередь эффективность различных комбинаций первую конденсирующих агентов или азеотроп-образующих компонентов ${f C}$ и кислотных катализаторов kat. оценивалась в реакциях конденсации (+)камфоры I и 2-этиланилина III (таблица 1, опыты 1-13). По результатам этих опытов можно сделать вывод о том, что подходы, основанные на азеотропной отгонке выделяющейся в ходе реакции воды, являются неэффективными для конденсации (+)-камфоры І с низкоосновными ариламинами (таблица 1, опыты 1-4). Использование (EtO)₄Si не позволяет получать анил камфоры **VII** (опыты 14-16), содержащий фрагмент 2-аминопиридина **IV**, и даёт невысокий выход анила фенхона VIII (опыт 19), несмотря на отличные результаты в опытах 6-8. Наилучшим образом в качестве конденсирующего агента С зарекомендовал себя (*i*-PrO)₄Ti (опыты 10, 11, 17, 18 и 21). Наиболее эффективным и универсальным является подход, основанный на применении (i-PrO)₄Ti комплексного $(i-PrO)_2Ti(OTf)_2 \cdot (i-PrOH)_2$ соединения образованного *in situ* из (*i*-PrO)₄Ti и TfOH, в качестве катализатора (опыты 11, 18, 21).

Согласно литературным источникам, ранее данное комплексное соединение применялось только в качестве катализатора для реакции Дильса-Альдера⁵. Образующийся *in situ* комплекс обеспечивает гомогенный катализ реакции.

В случае рассматриваемого взаимодействия, которое не столь эффективно катализируется протонными кислотами (например, TsOH или H_2SO_4), мы предположили следующий механизм действия предложенной каталитической системы (схема 2):

Cxema 2

$$\rightarrow (i \text{PrO})_2 \text{Ti}(\text{OTf})_2 \cdot (i \text{PrOH})_2 \xrightarrow{\frac{170 \cdot 180 ^{\circ}\text{C}}{-2 i \text{PrOH}}} \text{Ti}(\text{OTf})_2 (i \text{PrO})_2 \xrightarrow{} \text{Ti}(\text{OTf})_4 + \text{Ti}(i \text{PrO})_4$$

$$Ti(PrO)_{4}+TfOH \longrightarrow (PrO)_{2}Ti(OTf)_{2} \cdot (PrOH)_{2} \xrightarrow{\frac{170-180^{\circ}C}{-2 \cdot PrOH}} Ti(OTf)_{2} (PrO)_{2} \longrightarrow Ti(OTf)_{4} + Ti(PrO)_{4}$$

$$Me \longrightarrow (PrO)_{2}Ti(OTf)_{3} \xrightarrow{A_{E}} Me \longrightarrow (PrOH)_{2} \xrightarrow{\frac{170-180^{\circ}C}{-2 \cdot PrOH}} Ti(OTf)_{3} + TfO$$

$$Me \longrightarrow (PrO)_{4} + Ti(OTf)_{3} \xrightarrow{A_{N}} Me \longrightarrow (PrOH)_{2} \xrightarrow{\frac{170-180^{\circ}C}{-2 \cdot PrOH}} Ti(OTf)_{3} + TfO$$

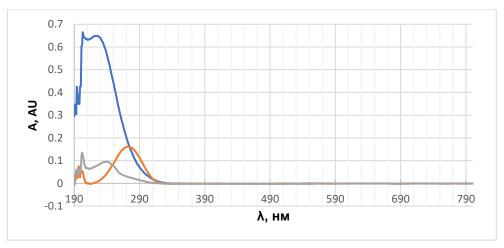
$$Me \longrightarrow (PrOH)_{4} + Ti(OTf)_{3} \xrightarrow{Me} Me \longrightarrow (PrOH)_{4} + Ti(PrO)_{4} \xrightarrow{HoroH} Me$$

$$Me \longrightarrow (PrOH)_{4} + Ti(PrO)_{4} \xrightarrow{HoroH} Me$$

$$Me \longrightarrow (PrOH)_{4} + Ti(PrOH)_{4} \xrightarrow{HoroH} Me$$

$$Me \longrightarrow (PrOH)_{4} \xrightarrow{Ho$$

Ввиду того, что реакция идет в условиях термодинамического контроля, при повышенной температуре, на первом этапе происходит термическая


⁵ Motoyama Y., Tanaka M., Mikami K. // Inorg. Chim. Acta. 1997. V. 256. № 2. P. 161–163.

десольватация комплекса с отгонкой изопропанола. Между трифлатом титана тетраизопропил орто-титанантом устанавливается динамическое равновесие, причем, в качестве кислоты Льюиса, выступает катион трис(трифлато)титана (IV). Последний содействует акту нуклеофильной атаки атома азота молекулы амина по атому углерода карбонильной группы, за счет координации с атомом кислорода карбонильной группы и поляризации связи С=О. Нуклеофильное присоединение амина с образованием титанового комплекса полуаминаля предшествует элиминированию молекулы воды, моментально гидролизует тетраизопропил орто-титанант двуокиси титана (выпадает в осадок) и изопропанола (отгоняется из реакционной массы). В итоге, выполняются условия необратимого протекания процесса.

Данная гипотетическая схема взаимодействия, во многом, синонимична использованию в аналогичных реакциях хлорида титана (IV) в сочетании с амина 6 , избытком являющегося акцептором хлористого водорода. Предложенная однако, нами система, имеет следующие преимущества. С одной стороны, трифлат титана является гораздо более сильной кислотой Льюиса, чем хлорид титана (IV) (это, в свою очередь, обусловлено гораздо более высокой кислотностью трифторметансульфоновой кислоты, по сравнению с соляной), что обусловливает возможность применения каталитического количества этого вещества для успешного протекания реакции. С другой стороны, тетраизопропил орто-титанант, как дегидратирующий агент, имеет весомое преимущество перед хлоридом титана (IV), так как при гидролизе выделяет изопропанол, а не хлористый водород и не требует применения большого избытка амина для проведения этого синтеза.

Для косвенного подтверждения образования комплексного соединения $(i\text{-PrO})_2\text{Ti}(\text{OTf})_2\cdot(i\text{-PrOH})_2$ из $(i\text{-PrO})_4\text{Ti}$ и TfOH была проведена УФ-спектроскопия 3 образцов одинаковой концентрации (рисунок 1). На УФ-спектре $(i\text{-PrO})_4\text{Ti}$ имеет ярко выраженную полосу поглощения в области 250 нм, а TfOH в области 280 нм. При их смешении в УФ-спектрах наблюдается исчезновение полосы поглощения в области 290 нм и значительное снижение интенсивности полосы в области 250 нм. Это может свидетельствовать об образовании комплексного соединения.

⁶ Hiroi K., Watanabe K. // Tetrahedron Asymmetry. 2001. Vol. 12, 2001, P. 3067-3071.

Рисунок 1 — UV-Vis спектр i-PrO)₄Ti (синий), TfOH (оранжевый) и комплекса (i-PrO)₂Ti(OTf)₂·(i-PrOH)₂ (серый).

На примере получения продуктов конденсации (+)-камфоры с *орто*-толуидином и 2-этиланилином, в структуре которых аминогруппа экранирована алкильным фрагментом, исследовано влияние соотношений исходных реагентов на выход целевых продуктов реакции (таблица 2).

Таблица 2 — Влияние количества $(i-PrO)_{A}$ Ті на выходы продуктов **2** и **7**

Образующийся продукт	Соотношения исходных реагентов: (+)-камфора: $ArNH_2$: $(i-PrO)_4$ Ti	
	1:1.1:0.55	59
	1:1.1: 0.825	72
2-Me (2)	1:1.1:1.1	61
	1:1.1:1.5	49
	1:1.1:2.0	40
	1:1.1:0.55	50
2 E+ (7)	1:1.1: 0.825	69
2-Et (7)	1:1.1:1.1	43
	1:1.1:1.5	45
	1:1.1:2.0	34

Было установлено, что использование 0.825 экв $(i\text{-PrO})_4$ Ті по отношению к исходному кетону является оптимальным условием, позволяющим получать целевые анилы 2 и 7 с наилучшими выходами (72% и 69%, соответственно). Как разбавление реакционной массы $(i\text{-PrO})_4$ Ті (влечет за собой снижение концентрации кетона и амина), так и значительное уменьшение количества конденсирующего агента (за счет ухудшения ковалентного связывания воды, выделяющейся в ходе реакции) приводит к понижению выхода целевых веществ.

Таким образом, с помощью предложенного в настоящей работе способа получения анилов камфоры и фенхона были синтезированы следующие соединения (схема 3):

Схема 3

Результаты показали, что на выход и продолжительность реакции конденсации выбранных монотерпеноидных кетонов решающее влияние оказывают два фактора. Первый из них — пространственный: введение заместителей в *орто*-положения в структуре исходного ароматического амина сопровождается заметным увеличением времени реакции, необходимого для достижения полной конверсии исходного реагента, взятого в недостатке (маркером протекания реакции является завершение отгонки изопропилового спирта из реакционной массы).

С другой стороны, важное значение для продолжительности реакции конденсации играет природа ароматического фрагмента в структуре исходного амина (бензольное или пиридиновое кольцо), равно как и электронное влияние заместителей в кольце. Так, ориентанты первого рода, относящиеся к числу активирующих заместителей (алкильные и алкоксигруппы), обогащая кольцо электронной плотностью, содействуют протекаю реакции за счет повышения нуклеофильных свойств исходного амина. В то же время введение в бензольное ядро исходного анилина атома галогена, являющегося дезактивирующим ориентантом первого рода, снижает как основность, так и нуклеофильность исходного амина. Это приводит к увеличению времени реакции (в синтезе веществ 15 и 37) и снижению выхода в случае вещества 37.

Также обращает на себя внимание взаимодействие (+)-камфоры с 5-амино-1,3-бензодиоксолом, позволяющее получить соответствующее иминопроизводное **14**. В спектрах ЯМР 1 Н и 13 С этого соединения наблюдаются характерные для бензодиоксольных систем сигналы метиленового фрагмента – синглет при δ 5.91 м.д. в спектре 1 Н и сигнал при δ 100.9 м.д. в спектре 13 С. Устойчивость ацетального фрагмента в заданных условиях косвенно подтверждает каталитическую роль катиона трис(трифлато)титана (IV), а не протона в данной реакции, а также — важность постоянного удаления образующегося изопропанола, во избежание сольволиза гетероцикла.

Особенностью протекания рассмотренной реакции в случае изомерных монотерпеноидных кетонов - камфоры и фенхона - является неодинаковое соотношение геометрических изомеров образующихся анилов. Причиной этого является различное влияние Ван-дер-Ваальсовых сил отталкивания между углеводородным фрагментом в молекуле амина и метильными группами в структуре кетона. В случае (+)- и *rac*-камфоры реакция приводит к образованию лишь одного из возможных геометрических изомеров (Eизомеру). В то же время, для (-)-фенхона, имеющего иное расположение групп относительно реакционного центра, наблюдается метильных образование смеси геометрических изомеров целевых анилов 26-37, которое подтверждается двойным набором сигналов на спектрах ЯМР.

2.2 Сравнительная оценка методов восстановления (гет)арилиминов камфоры и фенхона

В рамках исследования рассматривались методы восстановления, проведение которых не требует применения специальной аппаратуры и исключает необходимость работы с водородом при повышенном давлении.

В качестве модельного объекта для первичных исследований был выбран N-[(1R,4R)-камфан-2-илиден]-2-этиланилин 7, в структуре которого кратная связь C=N существенно экранирована каркасным фрагментом в сочетании с алифатическим радикалом в *орто*-положении ароматического ядра. Сделано это было для того, чтобы отсеять восстановители, чувствительные к пространственному фактору, который еще более выражен в случае анилов фенхона. В ходе проведенного исследования, анил 7 не восстанавливался в условиях реакции Швенка-Папа, равно как и оставался стабильным к воздействию AlH₃ и LiAlH₄ (таблица 3). Восстановление модельного субстрата 7 цинковым порошком в AcOH, приводило к конкурентному гидролизу исходного анила до 2-этиланилина и камфоры, за счет остаточной влаги в AcOH (таблица 3). Признаков восстановления исходного анила при этом не наблюдалось.

Таблица 3 — Сравнительная оценка эффективности методов восстановления имина камфоры **7**

Опыт	Восстановительная система	Растворитель	Выход 44, %
1^a	Ni/Al - KOH	Водный ТГФ	0
2^b	LiAlH ₄	ТГФ	0
3^c	AlH ₃	Et ₂ O	0
4^d	Zn	AcOH	0
5^e	$NaBH_4 - I_2$	ТГФ	42
6 ^f	NaBH ₄ − NiCl ₂ ·6H ₂ O	MeOH	77
7 ^f	NaBH ₄ − NiCl ₂ ·6H ₂ O	EtOH	80

^{*a*} Субстрат **7** (30 ммоль), Ni/Al (6 г), ТГФ (200 мл), 5 % водн. КОН, 20 °C, 1.5 ч, затем кипение, 2 ч. ^{*b*} Субстрат **7** (10 ммоль), LiAlH₄ (15 ммоль), ТГФ (60 мл), 0 °C, 0.5 ч, затем кипение, 4 ч. ^{*c*} Условия реакции: Субстрат **7** (10 ммоль), AlH₃ (15 ммоль), Et₂O (60 мл), 0 °C, 0.5 ч, затем кипение, 4 ч. ^{*d*} Субстрат **7** (10 ммоль), порошок Zn (3 по 10 ммоль), AcOH (15 мл на 1 г субстрата), 20 °C, 16 ч, затем кипение, 4 ч. ^{*c*} Субстрат **7** (10 ммоль), I₂ (10 ммоль), NaBH₄ (25 ммоль), ТГФ (35 мл на субстрат, 25 мл на I₂), 0 °C, 2 ч, затем кипение, 4 ч. ^{*f*} Субстрат **7** (10 ммоль), NiCl₂·6H₂O (20 ммоль), NaBH₄ (100 ммоль), MeOH или EtOH (2 мл на 1 г субстрата и 1 мл на 1 г NiCl₂·6H₂O), −30 °C, 1 ч, затем 20 °C, 16 ч.

В то же время, более успешными оказались эксперименты, основанные на использовании восстановительных систем на основе NaBH₄ (схема 4).

Cxema 4

(5)

NaBH₄,
$$I_2$$

Tr Φ

aproh

(6), (7)

NaBH₄, NiCl₂·6H₂O

ROH

ROH

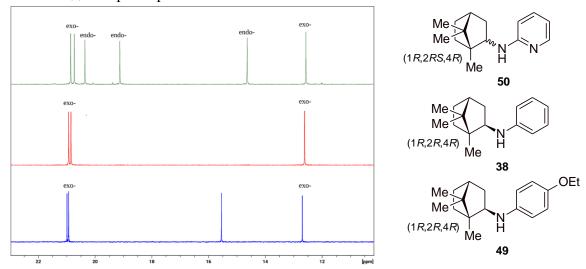
ROH

В случае применения системы «NaBH₄ — I_2 /THF» молекула, образующегося *in situ*, BH₃ более «компактна» в сравнении с AlH₃, чем и объясняется преимущество системы 5 (таблица 3). Восстановление соединения 7 с последующим кислотным гидролизом в жестких условиях дают лишь 42%-ый выход целевого продукта 44 в виде смеси экзо- и эндостереоизомеров в соотношении 1:1.7.

Применение NaBH₄ в сочетании с NiCl₂·6H₂O в спиртовой среде, с одной стороны позволяет использовать большую компактность аниона ВН₄ по сравнению с AlH₄-, а с другой – преимущество псевдогомогенного катализа ультрамикродисперсными частицами никеля, полученными situ. посредством восстановления $NiCl_2 \cdot 6H_2O$. Необходимо что предложенная замена органического растворителя с MeOH на EtOH в данном случае не привела к снижению уровня выхода целевого продукта (таблица 3, опыт 6 и 7). На основании полученных данных для дальнейшего восстановления анилов камфоры и фенхона был выбран вариант 7 (таблица 3), как наиболее эффективный и оптимальный (схема 5).

Восстановление анилов (+)- и (*rac*)-камфоры с использованием NaBH₄ – NiCl₂·6H₂O в целом согласуется с литературными данными^{7,8} и приводит к образованию исключительно *экзо*-диастереомеров целевых аминов. Исключениями являлись лишь имины, содержащие 2-аминопиридиновый фрагмент **13** и **25**, восстановление которых приводило к смеси эквимолярных количеств двух диастереомеров для каждого из целевых веществ (**50** и **61**) (таблица 4). Образование смеси диастереомеров подтверждается двойным набором сигналов на спектре ЯМР ¹³С (рисунок 2). Наблюдаемое явление можно объяснить предварительным образованием *in situ* и последующим восстановлением никелевого комплекса исходного соединения.

В случаях, когда субстратами для восстановления выступали производные фенхона, образовывались соответствующие целевые амины с (1R,2R,4S)-конфигурацией стереогенных центров. Однако, в некоторых случаях были зафиксированы смеси диастереомеров, где экзо-форма (конфигурация 1R,2S,4S-) присутствует в качестве минорного компонента **65**, **70-72** (таблица 4).


⁷ Periasamy M., Devasagayaraj A., Satyanarayana N., et. al. // Synth. Commun. 1989. Vol. 19, I. 3 4. P. 565-573.

⁸ Sokolova A.S., Yarovaya O.I., Korchagina D.V., et. al. // Bioorg. Med. Chem. 2014. Vol. 22. P. 2141-2148.

Таблица 4 — Экспериментальные данные по восстановлению анилов камфоры и фенхона в системе $NaBH_4 - NiCl_2 \cdot 6H_2O$ в EtOH, для которых зафиксировано образование смеси *экзо-* и *эндо-*изомеров целевых аминов

		_
		Конфигурация
Соединение	Соотношение	хиральных центров
Соединение	диастереомеров	основного
		диастереомера ^а
50	1:1	$1R,2R,4R + 1R,2S,4R^{6}$
61	1:1	1R,2R,4R + 1R,2S,4R 6
65	4:1	1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i> (эндо-)
70	100:7	1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i> (эндо-)
71	100:3	1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i> (эндо-)
72	2:1	1 <i>R</i> ,2 <i>R</i> ,4 <i>S</i> (эндо-)

^{*a*} Для образцов были зарегистрированы спектры ЯМР ¹H, ЯМР ¹³С (¹H), ¹³С (J-mod), ¹H-¹H COSY, ¹H-¹H NOESY, ¹H-¹³C HSQC, ¹H-¹³C HMBC. Отнесения сигналов и установление конфигурации соединений выполнены с использованием двумерных корреляционных спектров и спектров NOESY. ^{*б*} Смесь состоит из примерно равных по своему соотношению э*кзо*- и э*ндо*-диастереомеров.

Рисунок 2 — Сравнение фрагментов ЯМР спектров ¹³С веществ **38**, **49**, **50**

Основываясь на результатах, полученных в разделе 2.1, особое внимание было направлено на восстановление анилов, имеющих заместитель в ортоположении ароматического кольца. Мы предполагали, что для анилов фенхона 27 и 30 процесс восстановления может оказаться неэффективным ввиду сильных стерических затруднений связи С=N. Однако вторичные амины 63 и 66 были получены с удовлетворительными значениями выходов (59-60%). В то же время анилы (+)- и (rac)-камфоры 7 и 20, с этильным заместителем в орто-положении ароматического ядра, восстанавливались заметно хуже остальных. Так, после полного цикла восстановления субстрата 7 выход лишь 37%, амина 44 по ΓX-MC целевого данным составил этом 57% исходного имина осталось непрореагировавшим. Полной конверсии анила **7** удалось достичь лишь после двух дополнительных обработок теми же количествами $NaBH_4$ и $NiCl_2 \cdot 6H_2O$ при стандартных для данной реакции условиях.

Несмотря на то, что указанные подходы (таблица 3, опыты 5 и 7) при экстраполяции на другие анилы камфоры и фенхона позволили получить положительный результат восстановления, не обощлось и без нюансов, ограничивающих их применение в отдельных случаях. Для выявления этих ограничений в качестве другого модельного объекта также было использовано соединение **15**.

При обработке субстрата **15** системой «NaBH₄ – NiCl₂·6H₂O» был получен продукт восстановления **38**, не содержащий атома брома, который в данных условиях под действием BH_4^- в результате нуклеофильного ароматического замещения приводит к образованию бромида натрия (Схема 6).

экзо- : эндо- (37 : 63)

С другой стороны, обработка соединения **15** ВН₃, полученным *in situ* из NaBH₄ и I_2 в виде комплекса с ТГФ, с последующим кислотным гидролизом реакционной смеси позволила получить смесь диастереомеров N-(4-бромфенил)камфан-2-амина **73** (схема 6). Разделение смеси изомеров было проведено методом колоночной хроматографии с гравитационным элюированием циклогексаном, что позволило получить индивидуальные соединения.

2.3 Изучение биологической активности и цитотоксичности N- арилзамещенных камфан- и фенхан-2-аминов в опытах $in\ vitro\ u\ in\ vivo$

В ходе исследования цитотоксических свойств и противовирусной активности в отношении вирусов гриппа A(H1N1), A(H5N2) и вируса гриппа B N-арилзамещенных камфан- и фенхан-2-аминов были получены следующие данные (Таблица 5).

Таблица 5 — Противовирусная активность наиболее эффективного соединения в отношении вирусов гриппа в культуре клеток MDCK.

Вирус гриппа	Соединение	СС50, мкМ	IC ₅₀ , мкМ	SI
A/Puerto	43	332,6	33,4	10
Rico/8/34 (H1N1)	Осельтамивир а карбоксилат	>640	0.96	>667
	62	>1308,0	81,0	16
B/Florida/04/06	Осельтамивир а карбоксилат	>640	0.96	>667
A/mallard/	40	580,6	45,2	13
Pennsylvania/	67	209,0	11,7	18
10218834 (H5N2)	Осельтамивир а карбоксилат	>640	0.96	>667

В целом, изученные соединения обладали умеренной противовирусной активностью. Из 19 соединений показатели индекса селективности 10 и выше были продемонстрированы для одного вещества в отношении вируса гриппа A(H1N1), одного в отношении вируса гриппа A(H5N2) и двух соединений в отношении гриппа В. Примечательно, что три соединения (40, 43 и 67) из числа наиболее активных имеют метильный заместитель в положении 3 ароматического кольца.

В исследованиях противомикробной активности *in vitro* в отношении *Halobacterium salinarum* высокую активность показало соединение 2- $\{[(1R,2RS,4R)$ -камфан-2-ил]амино $\}$ пиридин **50**. В концентрации 8 мкМ оно вызывало полное подавление роста тест-культуры, а 50% подавление наблюдалось при его использовании в концентрации 0.5 мкМ. Аналогичным действием, причем в сходных концентрациях обладал ловастатин (таблица 6).

Таблица 6 – Противомикробная активность продуктов восстановления анилов монотерпеноидных кетонов в системе *Halobacterium salinarum*

Соотиновию	МПК, мкМ			
Соединение	$\mathrm{M}\Pi\mathrm{K}_{100}{}^*$	$M\Pi {K_{50}}^{**}$	Лизис клеток***	
70	>32	32	>32	
71	>32	24	>32	
50	8	0.5	32	
Ловастатин****	3 (>24)	0.75 (24)	24 (>24)	

 $^{^*}$ МПК $_{100}$ – концентрация к.ж., полностью подавляющая рост клеток.

Поскольку используемая в настоящем исследовании тест-система H. salinarum позволяет эффективно отбирать противоопухолевые антибиотики⁹,

-

 $^{^{**}}$ МПК $_{50}$ – концентрация к.ж., подавляющая рост клеток на 50%.

^{***} Концентрация, вызывающая лизис культуры.

^{****} Значение МПК в мкМ, в скобках - после добавления мевалоната (3 мМ)

⁹ Тренин А.С. *Антибиот. и химеотерап.* 2013, 58, 5-6, 3.

можно предположить, что (гет)ариламино-производные бициклических монотерпенов, в частности соединение **50**, могут представлять интерес для последующего изучения их потенциала в качестве средств этиотропной терапии злокачественных новообразований.

Для полученных N-(камфан-2-ил)анилинов — структурных аналогов «Бромантана», была исследована психотропная активности в тестах *in vivo* на крысах и мышах. Необходимо отметить, что N-(4-бромфенил)камфан-2-амина среди исследуемых веществ не было. По результатам тестов «Открытое поле» и «Приподнятый крестообразный лабиринт» животные, получавшие вещество 45, больше других выходили в светлый рукав ПКЛ и большее время проводили в них, что позволяет предполагать наличие у них анксиолитического действия. В тесте «наказуемых взятий воды» отмечалось большее количество наказуемых взятий воды, чем животные контрольной группы, но меньше животных получавших препарат сравнения диазепамом. Соединение 45 незначительно уменьшало время иммобилизации в тестах «Подвешивание мышей за хвост» и в «Тесте экстраполяционного избавления» в сравнении с контролем. При оценке влияния вещества на когнитивную функцию было отмечено увеличение времени исследования неизвестного предмета и уменьшение времени решения экстраполяционного избавления, что можно расценивать, как улучшение когнитивной функции. В тесте удержания мышей на канатике отмечалось достоверно более продолжительное удерживание животных на канатике. Представленные данные свидетельствуют, что соединение 45 проявляет выраженное анксиолитическое действие, при этом не миорелаксирующего и амнезирующего эффектов, демонстрирует умеренное антидепрессивное действие. Вещество относится к умеренно-токсичным соединениям, $\Pi \Pi_{50}$ соединения больше 1500 мг/кг. Примечательно, что из числа исследованных веществ, это соединение является наиболее близким аналогом «Бромантана», так как этильный радикал, зачастую, рассматривается как биоизостер атома брома с позиций медицинской химии.

2.4 Использование функциональных азотсодержащих производных монотерпенов в качестве добавок к полимерным смесям

Полученный N-[(1RS,4RS)-камфан-2-илиден]анилина **1** был исследован в качестве ультрафиолетового (У Φ) абсорбера при 3D-печати методом цифровой обработки света (digital light processing, DLP). Согласно акту проведенных испытаний, фотополимеризующаяся композиция, содержащая N-[(1RS,4RS)-камфан-2-илиден]анилин 1, прошла производственные были испытания, ходе которых зафиксированы необходимые технологичность и чувствительность в соответствующей УФ-области спектра. Поглощение анила камфоры 1 в УФ-диапазоне в области максимума испускания источника излучения 3D-принтера (406–409 нм) меняется

незначительно (с 0.042 до 0.036), тогда как у 2-(2-гидрокси-5-метилфенил)бензотриазола оно уменьшается более чем в два раза (с 0.056 до 0.024), что, по-видимому, и является причиной большей линейной точности при печати.

Разработанные *N*-арилзамещенные камфан-2-амины представляют привлекательную альтернативу существующим компонентам резиновых смесей, повышающих их термоокислительную стабильность. Результаты лабораторных исследований подтверждаются натурными испытаниями, проведенными на территории климатической испытательной станции «Кон Зо» г. Хошимин, СРВ, что после проведения дополнительных исследований позволит рекомендовать использование некоторых арилзамещенных камфан-2-аминов в качестве стабилизаторов в рецептурах резин, в том числе в тропическом климате. Наибольшую эффективность в качестве стабилизаторов при длительной экспозиции в тропическом климате проявляют соединения 57 и 59, содержащие метокси-группу в ароматическом кольце. Это выражается в лучшем сохранении упруго-прочностных свойств, а также в меньшем возрастании твердости резин¹⁰. Защитный эффект веществ 57 и 59 соизмерим с действием Диафена ФП, при гораздо большей токсичности последнего и продуктов его деструкции¹¹. Кроме того, проведенная сравнительная оценка склонности к миграции стабилизаторов из массива резины на поверхность показала, что исследуемые в качестве противостарителей для резин на основе непредельных каучуков соединения 57 и 59 имеют преимущество по сравнению с другими стабилизаторами аминного типа, широко используемыми в рецептурах резин. По потере массы, первоначальному количеству введенного стабилизатора, численные значения для продуктов 57 и 59 в 2,7 – 3 раза меньше по сравнению с Неозоном Д и Диафеном ФП.

Третья глава (экспериментальная часть) содержит подробное описание методик получения ключевых интермедиатов и целевых соединений, информацию о биологических исследованиях, о проведения натурных испытаний образцов резин с разработанными противостарителями, а также сведения о постановке экспериментов по 3D-печати.

¹⁰ Нилидин Д.А. Резины на основе непредельных каучуков, стабилизированные производными анилина с каркасным монотерпеновым фрагментом при атоме азота: дис. ... канд. техн. наук: 1.4.7 Высокомолекулярные соединения/Нилидин Дмитрий Андреевич. — Волгоград, 2024. — 123 с.

¹¹ Cao G., Wei W., Zhang J., et. al. // Environ. Sci. Technol. 2022. 56. 7. 4142–4150.

ЗАКЛЮЧЕНИЕ

Впервые предложено использование комплексного соединения (i-PrO)₂Ti(OTf)₂·(i-PrOH)₂ для получения анилов пространственно-затрудненных кетонов. При использовании системы «NaBH₄ – NiCl₂·6H₂O» в 95% EtOH были получены новые N-арилзамещенные камфан- и фенхан-2-амины, для которых были изучены биологическая активность и прикладные свойства.

В результате проведения диссертационного исследования можно сделать следующие выводы:

- 1. Разработан эффективный общий способ получения анилов камфоры и фенхона, основанный на использовании комплекса (i-PrO)₂Ti(OTf)₂·(i-PrOH)₂, полученного *in situ* из (i-PrO)₄Ti и TfOH, в качестве гомогенного катализатора, который позволяет эффективно получать целевые продукты с высоким выходом и чистотой. В то время как анилы камфоры образуются в виде E-изомеров, для анилов фенхона характерно образование смесей E-и Z-изомеров.
- 2. Проведено исследование методов восстановления анилов камфоры и фенхона. Показано, что модельный объект N-[(1R,2E,4R)-камфан-2-илиден]-2-этиланилин остается стабильным к действию AlH₃, LiAlH₄, а также реакции Швенка-Папа. При попытке восстановления названного анила цинковым порошком в AcOH, происходит разложение субстрата до исходного анилина и монотерпеноидного кетона. Применение системы «NaBH₄ I₂/THF» приводит к смесям диастереомеров целевых продуктов.
- Изучена диастереоселективность восстановления анилов камфоры и фенхона с помощью «NaBH₄ – NiCl₂·6H₂O». Особенностью предложенного подхода является использование EtOH в качестве растворителя, в сочетании с NaBH₄, как восстановителем, при псевдогомогенном катализе дисперсными частицами никеля, образованными in situ. Метод позволяет получать диастереомерно обогащённые продукты восстановления связи C=N в мягких условиях хорошим выходом. При восстановлении 2-[(камфан-2илиден)амино]пиридинов $2-\{[(1R,2EZ,4S)-\phienxan-2-$ И илиден амино пиридина образуются смеси экзо- и эндо-диастереомеров в соотношениях 1:1 и 2:1 соответственно.
- 4. В результате проведения биологических исследований было выявлено, что N-(гет)арилзамещенные камфан- и фенхан-2-амины обладают умеренной противовирусной активностью (показатели индекса селективности (SI) 10 и выше были продемонстрированы для четырех соединений); 2- $\{[(1R,2RS,4R)$ -камфан-2-ил]амино $\}$ пиридин показал высокую активность в исследованиях противомикробной активности *in vitro* и может представлять интерес в качестве потенциального противоопухолевого средства; N-[(1R,2R,4R)-Камфан-2-ил]-4-этиланилин проявляет выраженное анксиолитическое действие, при этом не оказывая миорелаксирующего и

амнезирующего эффектов, а также демонстрирует умеренное антидепрессивное действие, является умеренно-токсичным (III класс токсичности).

5. Разработанные анилы монотерпеноидных кетонов могут найти практическое применение в качестве перспективных УФ-абсорберов при получении изделий методом 3D-печати по технологии DLP. Кроме этого, некоторые *N*-арилзамещенных камфан-2-аминов продукты ИЗ ряда собой перспективную представляют альтернативу существующим компонентам резиновых смесей, повышающих их термоокислительную стабильность.

Основное содержание диссертации изложено в следующих публикациях:

Статьи в журналах, индексируемых международными базами данных:

- 1. Оценка психотропной активности новых структурных аналогов бромантана *N*-(камфан-2-ил)анилинов в тестах *in vivo* / **A.A. Вернигора**, Л.Л. Брунилина, А.В. Кажберов, Н.С. Болохов, А.А. Похлебин, А.А. Соколова, В.Э. Пустынников, И.Н. Тюренков, И.А. Новаков, В.И. Краснов, Д.Н. Половяненко // Фармация и фармакология. 2024. Т. 12, №4. С. 295-308.
- 2. N-[(1RS)-камфан-2-илиден]анилин новый эффективный жидкий УФ-абсорбер для 3D-печати в условиях фотохимического инициирования / Н.В. Сидоренко, М.А. Ваниев, Ю.М. Мкртчян, Н.А. Салыкин, **А.А. Вернигора**, И.А. Новаков // Тонкие химические технологии. 2025. Т. 20, № 2. С. 137-145.
- 3. Производные анилина, содержащие каркасный монотерпеноидный фрагмент при атоме азота: синтез и исследование антибактериальных свойств / **А.А. Вернигора**, А.В. Давиденко, Н.А. Салыкин, Л.Л. Брунилина, Д.Н. Небыков, С.Н. Лавренов, Е.Б. Исакова, А.С. Тренин, А.А. Нефедов, В.И. Краснов, Д.Н. Половяненко, И.А. Новаков // Известия Академии наук. Серия химическая. 2024. Т. 73, № 1. С. 168-178.
- 4. Эластомеры на основе бутадиеннитрильного каучука, стабилизированные *N*-арилзамещенными камфан-2 и фенхан-2-аминами / Д.А. Нилидин, М.А. Ваниев, **А.А. Вернигора**, М.Т. Данг, С.Г. Губин, А.В. Давиденко, Н.А. Салыкин, И.А. Новаков // Высокомолекулярные соединения. Серия С. 2024. Т. 66, № 1. С. 28-39.
- 5. N-[(1RS)-Камфан-2-илиден]-4-этоксианилин и продукт его восстановления как стабилизаторы бутадиен-нитрильных резин / Д.А. Нилидин, М.А. Ваниев, **А.А. Вернигора**, А.В. Давиденко, Н.А. Салыкин, Минь Тхуи Данг, С.Г. Губин, И.А. Новаков // Тонкие химические технологии. 2024. Т. 19, № 4. С. 360-371.

- 6. Новый эффективный подход к получению анилов (+)-камфоры и (-)-фенхона в условиях гомогенного катализа / **А.А. Вернигора**, Р.В. Брунилин, В.В. Бурмистров, А.В. Давиденко, М.Б. Навроцкий, Н.А. Салыкин, В.В. Чернышов, И.А. Новаков // Доклады Российской академии наук. Химия, науки о материалах. 2023. Т. 512. С. 52-58.
- 7. Исследование и сравнительная оценка методов восстановления (гет)арилиминов монотерпеноидных кетонов каркасного строения / **А.А. Вернигора**, Р.В. Брунилин, О.В. Вострикова, А.В. Давиденко, М.Б. Навроцкий, Н.А. Салыкин, И.А. Новаков // Известия Академии наук. Серия химическая. 2022. № 8. С. 1662-1669.

Статьи в рецензируемых журналах, рекомендованных ВАК РФ:

1. Влияние анилов D,L-камфоры на термоокислительную стойкость резины на основе бутадиеннитрильного каучука / **А.А. Вернигора**, Д.А. Нилидин, А.В. Давиденко, Нгок Ту Фан, С.Г. Губин, Е.В. Губина, М.А. Ваниев, И.А. Новаков // Известия ВолгГТУ. Сер. Химия и технология элементоорганических мономеров и полимерных материалов. - Волгоград, 2021. - № 5 (252). - С. 47-52.

Патенты РФ:

- 1. Пат. 2813595 РФ, МПК С08L 9/02, С08К 5/29, С08К 5/3417 Резиновая смесь / Д.А. Нилидин, **А.А. Вернигора**, А.В. Давиденко, Н.А. Салыкин, О.В. Кувшинова, Н.В. Ребров, А.А. Серединцев, М.А. Ваниев, И.А. Новаков; ВолгГТУ. 2024.
- 2. Пат. 2813528 РФ, МПК ВЗЗҮ 70/10, С07С 249/02 Использование анилов фенхона в качестве УФ-абсорберов фотополимеризующихся композиций для 3*D*-печати / Н.В. Сидоренко, Ю.М. Мкртчян, Т.В. Осыковая, М.А. Ваниев, **А.А. Вернигора**, А.В. Давиденко, Н.А. Салыкин, И.А. Новаков; ВолгГТУ. 2024.
- 3. Пат. 2794337 РФ, МПК С07С 251/02 [и др.] Использование анилов D-камфоры в качестве УФ-абсорберов фотополимеризующихся композиций для 3D-печати / Н.В. Сидоренко, Ю.М. Мкртчян, М.А. Ваниев, Н.И. Попов, **А.А. Вернигора**, А.В. Давиденко, Н.А. Салыкин, И.А. Новаков; ВолгГТУ. 2023.
- 4. Пат. 2807190 РФ, МПК С07С 251/20, С08К 5/18 Использование *N*-[(1*RS*,2*RS*)-камфан-2-ил]-4-метоксианилина в качестве противостарителя для резиновой смеси на основе бутадиен-нитрильного каучука / **А.А. Вернигора**, Д.А. Нилидин, А.В. Давиденко, Н.А. Салыкин, О.В. Кувшинова, Н.В. Ребров, А.А. Серединцев, М.А. Ваниев, И.А. Новаков; ВолгГТУ. 2023.
- 5. Пат. 2750161 РФ, МПК С07С249/02, С07С251/20 Способ получения анилов D-камфоры / **А.А. Вернигора**, И.А. Новаков, Р.В. Брунилин, А.В. Давиденко, П.П. Дешевов, М.Б. Навроцкий; ВолгГТУ. 2021.

6. Пат. 2751773 РФ, МПК С07С249/02, С07С251/20 Способ получения анилов *L*-фенхона / **А.А. Вернигора**, И.А. Новаков, Р.В. Брунилин, А.В. Давиденко, П.П. Дешевов, М.Б. Навроцкий; ВолгГТУ. – 2021.

Тезисы докладов:

- 1. Анилы монотерпеноидных кетонов и их производные: особенности синтеза и применение / **А.А. Вернигора**, В.В. Бурмистров, И.А. Новаков // VI Всероссийская конференция по органической химии : сб. тез. (г. Москва, 23-27 сентября 2024 г.) / Институт органической химии им. Н.Д.Зелинского РАН [и др.]. Москва, 2024. С. 108.
- 2. Исследование актопротекторного действия у новых производных ароматических аминов камфоры и фенхона / В.Э. Пустынников, Н.С. Болохов, **А.А. Вернигора** // 82-я Международная научно-практическая конференция молодых ученых и студентов «Актуальные проблемы экспериментальной и клинической медицины» (г. Волгоград, 24–26 апреля 2024 г.) : сб. ст. / ФГБОУ ВО "Волгоградский гос. медицинский университет" ; под ред. С. В. Поройского. Волгоград, 2024. С. 871-872.
- 3. *N*-арилзамещенные камфан и фенхан-2-амины: синтез и биологическая активность / **А.А. Вернигора**, В.В. Бурмистров // Материалы Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов 2024» (12-26 апреля 2024 г.), секция «Химия» / отв. ред.: А. В. Дзубан; Московский гос. университет им. М. В. Ломоносова. Москва, 2024. С. 529.
- 4. Новый подход к получению анилов терпеноидных кетонов в направленном конструировании структурных аналогов бромантана / **А.А. Вернигора**, И.А. Новаков, М.Б. Навроцкий, А.В. Давиденко, Р.В. Брунилин // MedChem-Russia 2021. 5-я Российская конференция по медицинской химии с международным участием «МедХим-Россия 2021» : материалы конф. (г. Волгоград, 16-19 мая 2022 г.) / Европейская Федерация Медицинской Химии, Отд. химии и наук о материалах РАН, ВолгГМУ, ВолгГТУ [и др.]. Волгоград, 2021. С. 243.

Подписано в печать2025 г. Формат 60х84 1/16. Бумага офсетная.
Печать офсетная.
Печ. л 1,0. Тираж экз. Заказ №
Отпечатано в типографии ИУНЛ Волгоградского государственного
технического университета.
400005, г. Волгоград, просп. им. В.И. Ленина, 28, корп. №7.