Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный технический университет»

На правах рукописи

БЫКОВ ДЕНИС СЕРГЕЕВИЧ

МАТРИЧНАЯ ПОЛИМЕРИЗАЦИЯ ТРИМЕТИЛ[МЕТАКРИЛОИЛОКСИЭТИЛ]АММОНИЙ МЕТИЛСУЛЬФАТА И СПОСОБЫ РЕГУЛИРОВАНИЯ МОЛЕКУЛЯРНОМАССОВЫХ ХАРАКТЕРИСТИК ПОЛУЧАЕМОГО ПОЛИЭЛЕКТРОЛИТА

1.4.7. Высокомолекулярные соединения диссертация на соискание ученой степени кандидата химических наук

Научный руководитель:

доктор химических наук, доцент

Шулевич Юлия Владимировна

Оглавление

Перечень сокращений и условных обозначений
Введение5
1 Радикальная полимеризация ионных мономеров в воде и в растворах
ассоциирующих дифильных соединений (литературный обзор)11
1.1 Классификация водорастворимых полимеров и потенциал их практического
применения
1.2 Закономерности радикальной полимеризации водорастворимых мономеров. 13
1.3 Матричная полимеризация на синтетических полимерах
1.3 Мицеллы ПАВ в качестве матрицы для полимеризации полиэлектролитов 29
1.4 Поверхностно-активные мономеры
1.5 Закономерности образования комплексов полиэлектролит – ПАВ 42
1.6 Применение полиэлектролитых коллоидных комплексов
2 Матричная полимеризация триметил[метакрилоилоксиэтил]аммоний
метилсульфата и способы регулирования молекулярно-массовых характеристик
получаемого полиэлектролита (обсуждение результатов)50
2.1 Взаимодействие 2,2'- азобис(2-метилпропионамидин)дигидрохлорида с
мицеллами ДДСН53
2.2 Влияние мономера, додецилового спирта и температуры на
мицеллообразование додецилсульфата натрия в воде57
2.3 Молекулярно-массовые характеристики полиэлектролитов, полученных
полимеризацией мономера на сфероидных мицеллах
2.4 Особенности мицеллообразования ДДСН и его взаимодействия с мономером в
бура-фосфатном буферном растворе79
2.5 Влияние бура-фосфатного буферного раствора на молекулярно-массовые
характеристики получаемых полиэлектролитов
2.6 Кинетические закономерности полимеризации ионогенного мономера на
мицеллах ДДСН в воде и в бура-фосфатном буферном растворе

2.7 Оценка полидисперсности полиэлектролитов, полученных полимеризацией
ионогенных мономеров в мицеллярных растворах противоположно заряженного
ПАВ101
2.8 Изучение сорбционной способности продуктов полимеризации и
флокулирующей способности полиэлектролитов, выделенных из продуктов
полимеризации
3 Экспериментальная часть
3.1 Синтез и очистка мономера
3.2 Приготовление растворов
3.3 Синтез полиэлектролитов свободнорадикальной полимеризацией
3.4 Синтез полиэлектролитов в мицеллярном растворе противоположно
заряженного ПАВ112
3.5 Определение ККМ ПАВ
3.6 Выделение полиэлектролитов из комплексов, синтезированных
полимеризацией в мицеллярных растворах додецилсульфата натрия117
3.7 Определение характеристической вязкости синтезированных
полиэлектролитов
3.8 Определение молекулярно-массовых характеристик полиэлектролитов
методами светорассеяния
3.9 Изучение кинетики полимеризации методом ЯМР-спектроскопии
3.10 Методика флокуляции водной дисперсии каолина
3.11 Методика сорбции органических веществ из водного раствора полимер
коллоидными комплексами
Заключение
Список использованной литературы

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

ККМ – критическая концентрация мицеллообразования

ПАВ – поверхностно-активное вещество

ПАМ – поверхностно-активный мономер

ПК – полиэлектролитный комплекс

ПЭКК – полиэлектролитный коллоидный комплекс

ДДС – додециловый спирт

ДДСН – додецилсульфат натрия

Кд – полидисперсность полимера

МП – матричная полимеризация

ММ – молекулярная масса

ПЭ – полиэлектролит

d – диаметр

А₂ – второй вириальный коэффициент

R_h-гидродинамический радиус

D – оптическая плотность

 M_{η} –средневязкостная молекулярная масса

 $R_{\rm g}$ – среднеквадратичный радиус инерции

 M_W —среднемассовая молекулярная масса

R – эффективный размер рассеивающих частиц

ВВЕДЕНИЕ

Актуальность темы исследования. Полиэлектролиты находят широкое применение в повседневной жизни человека. Например, их применяют в процессах водоочистки и водоподготовки, медицине, сельском хозяйстве и пр. Эффективность использования полиэлектролитов для решения прикладных задач во многом определяется их молекулярно-массовыми характеристиками, которые формируются на стадии синтеза. Как и для других полимеров, эксплуатационные свойства полиэлектролитов во многом зависят от их полидисперсности, молекулярно-массового улучшаясь ПО мере сужения распределения. способом Распространенным синтеза полиэлектролитов является свободнорадикальная полимеризация, существенным недостатком которой является неконтролируемость процесса. В результате, получаемые полимеры характеризуются широким молекулярно-массовым распределением. Поэтому в современной химии высокомолекулярных соединений актуальным направлением является разработка способов контролируемой полимеризации.

Перспективным способом синтеза полиэлектролитов, позволяющим контролировать *одновременно* и молекулярную массу, и полидисперсность полимеров является матричная полимеризация, поскольку в матричном синтезе молекулярная масса и полидисперсность дочернего полимера определяются соответствующими характеристиками используемой матрицы.

Степень разработанности темы исследования. Ранее было показано, что поверхностно-активных веществ (ПАВ) МОГУТ быть использованы в качестве матриц для проведения полимеризации ионогенных растворах. Несомненным мономеров водных преимуществом полимеризации является простота выделения дочернего полимера и многообразие возможных областей применения синтезированных продуктов полимеризации, которые представляют собой комплексы полиэлектролит-ПАВ. На основании детальных исследований взаимодействия ионных мономеров с мицеллами противоположно заряженных ПАВ были выявлены оптимальные условия

реализации полимеризации по матричному механизму и было впервые показано, полиэлектролиты, синтезированные В условиях, способствующих полимеризации на мицеллах ПАВ по матричному механизму, характеризуются более коэффициентом полидисперсности низким ПО сравнению полиэлектролитами, получаемыми свободнорадикальной полимеризацией водных растворах. Однако молекулярная масса получаемых полиэлектролитов также существенно понижается. Уменьшение молекулярной массы является нежелательным, поскольку основное применение полиэлектролиты находят в процессах дестабилизации дисперсных систем, ДЛЯ этого более предпочтительным является высокая молекулярная масса. Несмотря накопленные на сегодняшний день сведения о результатах по матричной полимеризации ионогенных мономеров на мицеллах ПАВ, свойствах получаемых полиэлектролитов, механизм формирования комплексов полиэлектролит – ПАВ в процессе такой полимеризации остается открытым. Важным и актуальным является также поиск способов увеличения молекулярной массы получаемых полиэлектролитов при сохранении пониженного коэффициента полидисперсности.

Целью работы является изучение способов регулирования молекулярномассовых характеристик полиэлектролита в матричной полимеризации на мицеллах додецилсульфата натрия (ДДСН) для получения высокомолекулярного политриметил[метакрилоилоксиэтил]аммоний метилсульфата.

Поставленная цель достигалась путем решения следующих задач:

- изучение влияния добавок органической (со-ПАВ) и неорганической природы (электролиты компоненты буферного раствора) на мицеллообразование додецилсульфата натрия;
- изучение влияния триметил[метакрилоилоксиэтил]аммоний метилсульфата на образование и структуру ассоциатов, образующихся в результате его взаимодействия с мицеллами противоположно заряженного ПАВ в водных растворах и в бура-фосфатном буферном растворе;
- выявление закономерностей матричной радикальной полимеризации
 триметил[метакрилоилоксиэтил]аммоний метилсульфата в разбавленных

мицеллярных растворах додецилсульфата натрия в водных растворах, а также в бура-фосфатном буферном растворе и определение молекулярно-массовых характеристик синтезированных полиэлектролитов;

- оценка сорбционной способности синтезированных комплексов;
- оценка флокулирующей способности синтезированных полиэлектролитов.

Научная новизна: впервые предложены способы управления процессом матричной полимеризации ионных мономеров на мицеллах ПАВ, заключающиеся в регулировании размеров и поверхности мицелл ПАВ, а также локализации инициатора, в результате чего синтезированные полиэлектролиты характеризуются высокой молекулярной массой и узким молекулярно-массовым распределением.

Личный вклад автора заключается в анализе литературных данных по вопросам полимеризации ионогенных мономеров в воде, на макромолекулярных матрицах, полимеризации поверхностно-активных мономеров, мицеллообразования ПАВ и полимеризации на мицеллах ПАВ, комплексам полиэлектролит – ПАВ и их применению, осуществлении экспериментальных исследований, обобщении интерпретации И полученных результатов, формулировании выводов. Включенные в диссертацию экспериментальные результаты получены лично автором, либо при непосредственном его участии.

Теоретическая и практическая значимость. Теоретическая значимость работы заключатся в поиске методов и подходов к получению полиэлектролитов с высокой молекулярной массой и пониженной полидисперсностью, образующихся в результате полимеризации ионогенных мономеров на мицеллах ПАВ, а также в изучении возможных направлений практического применения как комплексов полиэлектролит ΠAB , непосредственным являющихся продуктом полимеризации, так и полиэлектролитов, выделенных из этих комплексов. Вследствие высокой солюбилизирующей внутримолекулярной емкости мицеллярной фазы, комплексы полиэлектролит – ПАВ являются эффективными сорбентами для извлечения фенола из водных растворов. Выделенные из комплексов полиэлектролиты проявляют высокую флокулирующую способность.

Полученные результаты важны с точки зрения практического применения указанных реагентов в технологических процессах водоочистки и водоподготовки.

Работа выполнялась при финансовой поддержке РНФ (проект № 24-23-00227), программы развития Волгоградского государственного технического университета «Приоритет 2030» (проект №17/642-24), Министерства науки и высшего образования РФ (проект № FZUS-2023-0003).

Методология и методы исследования. Методология работы заключалась в установлении количественной И качественной взаимосвязи между триметил[метакрилоилоксиэтил]аммоний взаимодействием метилсульфата мицеллами додецилсульфата натрия в присутствии со-ПАВ – додецилового спирта в воде, а также в бура-фосфатном буферном растворе, закономерностями его полимеризации в мицеллярных растворах додецилсульфата натрия и молекулярномассовыми характеристиками полученных полиэлектролитов с привлечением следующих методов исследования: статическое и динамическое светорассеяние, турбидиметрия, капиллярная вискозиметрия, солюбилизация маслорастворимого красителя, кондуктометрия, тензометрия, флуориметрия, ЯМР-спектроскопия.

Положения, выносимые на защиту:

- вследствие специфического влияния ионов калия мицеллообразование додецилсульфата натрия в бура-фосфатном буферном растворе сопровождается резким уменьшением критической концентрации мицеллообразования и увеличением точки Крафта;
- мицеллообразование додецилсульфата натрия в присутствии со-ПАВ додецилового спирта в воде также приводит к уменьшению критической концентрации мицеллообразования, вследствие формирования смешанных мицелл;
- локализация мономера на поверхности мицелл не вызывает заметного дополнительного уменьшения критической концентрации мицеллообразования (ККМ). Однако уменьшение точки Крафта все же указывает на взаимодействие мономера с ДДСН, возможно более слабое, чем в воде;
- полимеризация на несферических мицеллах додецилсульфата натрия $(KKM_2 < [ДДCH] < KKM_3)$ в воде позволяет синтезировать полиэлектролиты,

которые характеризуются более высокими молекулярными массами, чем полиэлектролиты, полученные как в отсутствие ПАВ, так и в присутствии ПАВ более высокой концентрации;

— изменение pH реакционной среды позволяет управлять локализацией инициатора и, как следствие, менять механизм матричной полимеризации с zip-механизма (в кислой среде) на pick up механизм (в нейтральной среде), что позволяет увеличить молекулярную массу получаемых полиэлектролитов, даже при полимеризации на цилиндрических мицеллах ПАВ ([ДДСН] > ККМ₃).

Достоверность полученных результатов подтверждается и обеспечивается тщательностью проведения экспериментов, их многократной воспроизводимостью, хорошей сходимостью экспериментальных данных, полученных независимыми методами и в независимых лабораториях; квалифицированным использованием современных физико-химических методов анализа.

Апробация результатов. Материалы работы докладывались на XXIV Региональной конференции молодых ученых и исследователей Волгоградской области (Волгоград, 2019г.), XXVI Региональной конференции молодых ученых и исследователей Волгоградской области (Волгоград, 2021г.), XVIII Междунар. науч.-практ. конф., приуроченной к 80-летию А.К. Микитаева (г. Нальчик, 2022г.), VI Международной конференции по коллоидной химии и физико-химической механике «IC-CCPCM 13» (Казань, 2023г.), 15-той Санкт-Петербургской конференции молодых ученых с международным участием «Современные проблемы науки о полимерах» (Санкт-Петербург, 2023г.), 9-ой Всероссийской Каргинской конференции «Полимеры – 2024» (Москва, 2024г.), XXXI и XXXIV, XXXV Рос. молодеж. науч. конф. с международ. участием, «Проблемы теоретической и экспериментальной химии» (г. Екатеринбург 2021г., 2024г., 2025г.).

Публикация результатов. Результаты проведенных исследований опубликованы в 8 статьях в научных журналах, включенных в перечень российских рецензируемых научных журналов и изданий для опубликования основных научных результатов диссертаций и 10 тезисах докладов конференций.

Объем и структура работы. Диссертационная работа изложена на 153 страницах машинописного текста, включает 22 таблицы и 68 рисунков, состоит из введения, трех глав, заключения, списка использованных сокращений и списка литературы из 146 наименований.

Первая глава (литературный обзор) посвящена анализу закономерностей мицеллообразования ПАВ, полимеризации в структурированных растворах ПАВ и матричной полимеризации, формирования комплексов полиэлектролит-ПАВ.

Во второй главе приведены результаты исследования по самоорганизации ионогенного мономера в мицеллярном растворе додецилсульфата натрия, синтезу полиэлектролитов радикальной матричной полимеризацией в мицеллярных растворах алкилсульфатов натрия с добавками органической и неорганической природы, исследованию физико-химических свойств, синтезированных полиэлектролитов и их практическом применении для дестабилизации дисперсных систем, и сорбции органических соединений из водных растворов.

В третьей главе описаны характеристики применяемых исходных веществ, методики синтеза и исследования физико-химических свойств ПЭ и комплексов ПЭ-ПАВ.

Автор выражает благодарность за содействие в проведении эксперимента и помощь в обсуждении результатов *академику РАН И.А. Новакову* и *члену-корреспонденту РАН А.В. Навроцкому*, сотруднику ресурсного центра "Магнитнорезонансные методы исследования" научного парка Санкт-Петербургского государственного университета *Вовк М.А*.

1 РАДИКАЛЬНАЯ ПОЛИМЕРИЗАЦИЯ ИОННЫХ МОНОМЕРОВ В ВОДЕ И В РАСТВОРАХ АССОЦИИРУЮЩИХ ДИФИЛЬНЫХ СОЕДИНЕНИЙ

(литературный обзор)

В настоящие время свободнорадикальная полимеризация является основной для промышленного производства высокомолекулярных соединений и материалов на их основе, в том числе и водорастворимых полимеров [1, 2]. Доля полимеров, синтезируемых в условиях радикального инициирования, превышает 50% от их общемирового производства [3].

Разнообразие способов и методов проведения классической свободнорадикальной полимеризации позволяет получать полимеры различной молекулярной массы с высоким выходом. Однако получаемые полимеры, как правило, характеризуются широким молекулярно-массовым распределением. Поэтому современная химия высокомолекулярных соединений сосредоточена на разработке новых способов и методов проведения радикальной полимеризации, основной целью которых является контролирование молекулярной массы и снижение полидисперсности получаемых полимеров.

1.1 Классификация водорастворимых полимеров и потенциал их практического применения

Водорастворимые полимеры могут быть разделены на две группы: ионные и неионные. Растворение неионных полимеров происходит благодаря наличию гетероатомов в основной цепи (кислород, азот), которые при взаимодействии с водой формируют водородные связи, способствующие растворению полимера [4, 5]. К этой группе водорастворимых полимеров относят полиэтиленоксид (ПЭО), полиэтиленимин (ПЭИ), полиакриламид (ПАА), поливиниловый спирт (ПВС), поливинилпирролидон (ПВП) и полимеры природного происхождения (производные целлюлозы, полисахариды и др.).

$$H = \begin{bmatrix} O & NH_2 \\ N & NH_2 \end{bmatrix}$$
 $+ CH_2 - CH_2 \end{bmatrix}$ $+ CH_2 - CH_2 \end{bmatrix}$ $+ CH_2 - CH_2 + CH_2 \end{bmatrix}$ $+ CH_2 - CH_2 + CH_2 + CH_2 \end{bmatrix}$ $+ CH_2 - CH_2 + CH_2 +$

Вторая полиэлектролиты $(\Pi \exists)$ которые группа ЭТО имеют функциональные группы, способные к электролитической диссоциации. ПЭ классифицируют на сильные и слабые (в зависимости от величины константы диссоциации), а также на катионные, анионные и амфотерные (в зависимости от знака заряда, формируемого полииона) [6]. В соответствие с этой классификацией поликислоты (поливинилсульфоновая различают сильные кислота, полистиролсульфоновая кислота), слабые поликислоты (поли(мет)акриловая кислота).

$$\begin{bmatrix} -CH_2 - CH_2 \\ SO_3H \end{bmatrix}_n$$

Поливинилсульфоновая кислота

кислота

$$\begin{bmatrix} CH_2-CH- \\ COOH \end{bmatrix}_n \begin{bmatrix} CH_3 \\ -CH_2-C- \\ COOH \end{bmatrix}_n$$

Полиакриловая кислота

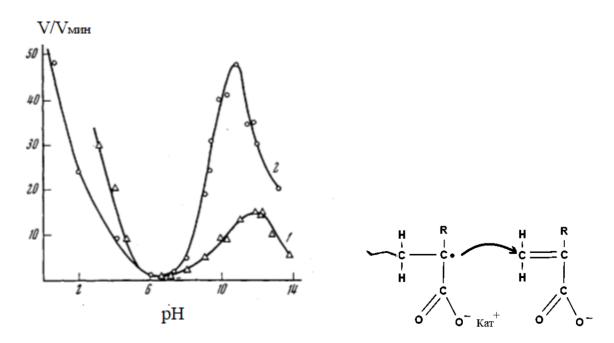
Полиметакриловая кислота

К сильным полиоснованиям относят замещенные полиамины, например: поливинил-*n*-толилтриметиламмоний, политриметиламмонийэтилакрилат. К слабым полиоснованиям относят поли-*n*-аминостирол, поли-4-винилпиридин. Амфотерные ПЭ, как правило, представляют собой сополимеры катионных и анионных полимеров или аминокислоты.

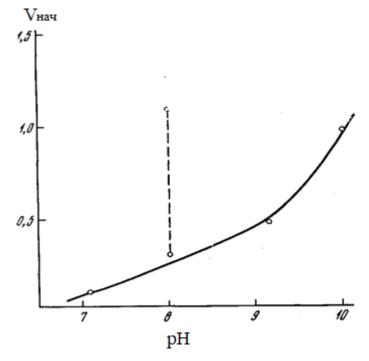
$$CH_2$$
— CH_2 —

Поли-п-аминостирол

Основное применение неионных полимеров – очистка природных и сточных целлюлозно-бумажной обезвоживание осадков В промышленности. вод, Анионные полимеры применяют для водообработки, флокуляции хвостов флотации руд, обогащения и регенерации полезных ископаемых и нефти, обработки бумаги и шлихтования текстильного материала. Катионные полимеры применяют для обработки бумаги и флокуляции биологических клеток. Полимеры с молекулярной массой (ММ) от 2 до 18 миллионов, используют как флокулянты, загустители и пленкообразователи, смазки, а ПЭ с ММ = (0,005- $0,4)\cdot 10^6$ используют как разжижители нефти, диспергаторы и стабилизаторы буровых растворов [7]. Сшитые ПЭ используют в качестве ионообменных материалов.


Поли-4-винилпиридин

1.2 Закономерности радикальной полимеризации водорастворимых мономеров


Отличительной особенностью полимеризации водорастворимых мономеров является зависимость скорости полимеризации от природы растворителя. С наибольшей скоростью реакции полимеризации протекают в воде, добавки

органических растворителей значительно уменьшают скорость полимеризации. Например, общая скорость полимеризации акриламида падает растворителей вода > формамид > диметилсульфоксид > тетрагидрофуран. $K_p/K_0^{-1/2}$ в воде в 12 раз больше, чем в диметилсульфоксиде и в 50 раз больше, чем в тетрагидрофуране. Это изменение связано в основном с увеличением Кр и уменьшением энергии активации реакции роста цепи. Роль растворителя в полимеризации водорастворимых мономеров проявляться может комплексобразовании с растущим радикалом и сольватации мономера радикалов. Вклад второго эффекта выражен сильнее, так как сольватация мономера и образование водородных связей приводит к изменению электронной структуры мономера и, как следствие, к изменению реакционной способности [8].

Влияние различных факторов на полимеризацию ПЭ было исследовано во множестве работ. Так в работах В.А. Кабанова с сотр. [9] было показано влияние рН на кинетику полимеризации акриловой и метакриловой кислот. Из представленного графика на рисунке 1.1 видно, что при увеличении рН скорость полимеризации падает и доходит до минимума, этот минимум соответствует ионизации полиметакриловой кислоты (pK_a=7,07), а дальнейший рост скорости полимеризации в щелочной области рН связан с увеличением концентрации ионов натрия. Падение скорости полимеризации на первом участке связано с ионизацией как мономера, так и макрорадикала и их электростатическом отталкивании друг от друга, а увеличение скорости связано с образованием ионных пар на концах цепи, что нивелирует электростатическое взаимодействие. Подтверждением образования ионных пар является увеличение скорости полимеризации при добавлении соли (увеличение концентрации ионов натрия) при рН когда макромолекулы ионизированы и скорость минимальна (рисунок Аналогичные эффекты на кинетику оказывают органические нейтрализующие агенты [10]. Их механизм взаимодействия зависит от рН среды гидрофобное взаимодействие). (образование ассоциатов, пар, ионных Кинетические кривые выглядят иначе, но принципиально не отличаются.

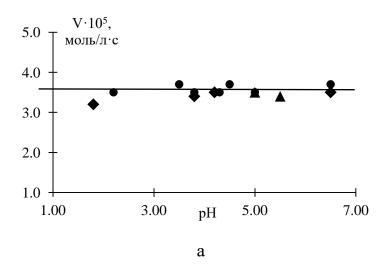

Рисунок 1.1 — Зависимость V/V мин при полимеризации МАК (1) и АК (2) от рН реакционных растворов, созданных добавлением NaOH, при 60° C. $v_{\text{мин}} \cdot 10^{5}$ МАК = 0,115 моль/л·сек; [МАК] = 0,92 моль/л; [ДАК] = $5 \cdot 10^{-4}$ моль/л (1); $v_{\text{мин}} \cdot 10^{5}$ АК = 0,43 моль/л·сек; [АК] = 1,2 моль/л; [ДАК] = $5 \cdot 10^{-3}$ моль/л (2)

Рисунок 1.2 - Зависимость начальной скорости полимеризации МАК от рН полимеризационной среды, созданного добавлением NaOH. Пунктиром обозначено направление увеличения скорости полимеризации в 2н водном растворе NaCl при 60° C; [MAK] = 2 моль/л; [ДАК] = $5 \cdot 10^{-4}$ моль/л

По итогу в работе [9] делается вывод, что в растворах метакриловой кислоты при высоких рН или содержащих хлорид натрия скорость полимеризации возрастает за счет увеличения константы роста цепи (K_p) .

В свете выше сказанного неожиданным оказывается независимость скорости полимеризации диэтиламиноэтилметакрилата (ДЭАЭМА) от рН (рисунок 1.3) [9].

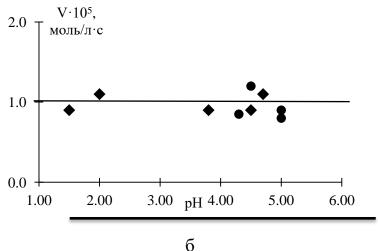


Рисунок 1.3 — Зависимость скорости полимеризации ДЭАЭМА (а) и четвертичной соли ДЭАЭМА· C_2H_5Br (б) от pH, установленного добавлением H_2SO_4 (\bullet) (60°C). а: \bullet — добавление CH_3COONa (1 моль/л); \blacktriangle — pH установлен добавлением пропионовой кислоты. [M] = 0,5 моль/л; [ДАК] = $1 \cdot 10^{-3}$ моль/л. б: — полимеризация в присутствии соли. [M] = 0,2 моль/л; [ДАК] = $5 \cdot 10^{-4}$ моль/л, [NaBr] = 1 моль/л

Полимеризацию проводили в гомогенной среде (90% воды + 10% этанола). Порядок по мономеру равен единице, по инициатору (ДАК) - 0,5. Добавление соли к ДЭАЭМА так же не изменяет картину полимеризации. Аналогичная

зависимость наблюдается и для четвертичной соли ДЭАЭМА·C₂H₅Br. Не чувствительность данных мономеров к увеличению рН и ионной силы раствора может быть связана с повышенной способностью макрорадикалов связывать противоионы из-за своей относительно высокой гидрофобности, что нивелирует положительный заряд на конце цепи. В работе [11] более детально изучено данное явление и дано объяснение, что мономеры существуют в виде внутримолекулярных ассоциативных структур, и тем самым, хоть полиэлектролит имеют катионную природу, но в водных растворах ведет себя электронейтральный добавление полимер. Стоит отметить, что Nнизкомолекулярной Na_2SO_4 полимеризации соли при триметиламмонийэтилметакрилата метилсульфата [12] приводит структурированию системы при конверсии более 15%, что приводит возрастанию вязкости и к проявлению гель-эффекта при меньших степенях конверсии.

Стоит отметить что азотсодержащие (мет)акриловые мономеры склонны к ассоциации [13] в широком концентрационном диапазоне, от образования ди- и тримеров до более крупных ассоциатов, которые влияют на физические свойства системы, например, увеличивают вязкость, как показано на рисунке 1.4.

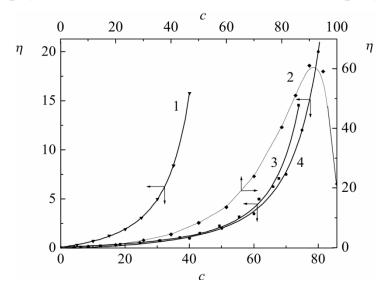


Рисунок 1.4 — Зависимость удельной вязкости η водных растворов от концентрации с (масс. %) мономера 1-натриеваясоль акриламиноуксусной кислоты, 2-диметиламинопропилметакриламид, 3- диметиламиноэтилметакрилат-хлорная кислота, 4-диметиламиноэтилметакрилат-диметилсульфат, при 25°C

Это в свою очередь влияет на кинетику полимеризации и на свойства получаемых ПЭ. Так порядок по мономеру становиться больше единицы и может доходить до 13 в зависимости от природы мономера и его концентрации в растворе (таблица 1.1).

Таблица 1.1 – Значения порядков реакции по мономеру (m) при полимеризации

виниловых мономеров в водных растворах

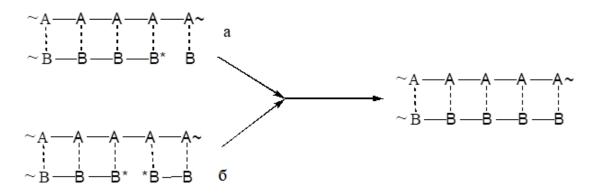
Мономер	m	Концентрация, моль/л	Литература	
$CH_2=C(CH_3)COOC_2H_4N^+(C_2H_5)_2Cl^-$	1,2	0,5-2,5	14	
	4,7	2,5-5,0		
[CH2=CHC6H3(CH3)N+CH3] CH3SO4	1,16	-	15	
CH ₂ =CHCOO ⁻ N ⁺ (CH ₃) ₃ H	1,5	1,0	15	
[CH ₂ =C(CH ₃)COOC ₂ H ₄ N ⁺ H	1,3-	0,5-3,0	15	
$(C_2H_5)_2$]CH ₂ =C(CH ₃)COO ⁻	2,1	0,5 5,0		
CH ₂ =CHCONHC(CH ₃) ₂ CH ₂ SO ₃ -Na ⁺	1,5-	0,13-0,65	16	
	3,4			
CH ₂ =CHCONHC(CH ₃) ₂ CH ₂ SO ₃ -K ⁺	13,1	0,81	17	

Используемый нами мономер (триметил[метакрилоилоксиэтил]аммоний метилсульфат) относится к группе ассоциирующих мономеров [13]. Согласно данным цитируемой работы (рисунок 1.4), процесс ассоциирования происходит при концентрации мономера в воде ~ 70 %. В настоящей диссертационной работе его максимальная концентрация не превышает 0,3 моль/л (8,5 %). Эта концентрация недостаточна для его спонтанной ассоциации в растворе, но его взаимодействие с ПАВ может сдвигать данную область в меньшие концентрации. Данные рассуждения будут подробнее представлены в обсуждении результатов.

Таким образом, в водной среде полимеризация протекает с большой скоростью. На скорость полимеризации можно повлиять изменением рН, ионной силы и добавкой органической реагентов (не растворителей), что существенно

отражается на свойствах ПЭ. Однако, не все ионные мономеры подчиняются этим закономерностям. Таким случаем можно считать полимеризацию в водных растворах виниловых аминоэфиров, но в процессе их полимеризации есть свои особенности. Так же стоит учитывать концентрационные эффекты (способность к ассоциации) некоторых мономеров.

Полимеры, синтезированные в условиях радикального инициирования, обладают молекулярно-массовым распределением, свойства широким a материалов на их основе зачастую не соответствуют требуемым технологическим характеристикам. Кроме того, высокие скорости полимеризации и короткое время растущих существенно ограничивает жизни цепей возможности макромолекулярного дизайна и синтетических манипуляций, в частности, при получении блок-сополимеров и различных разветвленных полимерных структур [1]. Поэтому поиск более совершенных методов проведения радикальной полимеризации является актуальным направлением в современной химии полимеров.


1.3 Матричная полимеризация на синтетических полимерах

Одним из способов, позволяющих контролировать ММ и полидисперсность (Кд) полиэлектролитов является матричная полимеризация. Необходимо отметить, что в настоящем литературном обзоре рассмотрены только такие системы, которые относятся к полимеризации обычных мономеров на простых синтетических макромолекулярных матрицах. Основы МП были заложены такими учеными как Каргин В.А., Кабанов В.А., Паписов И.М., Половинский С. и др. В основном под матричной полимеризацией понимают процесс, в котором на макромолекулярной матрице (полимере) растет дочерний полимер. Матрица определяется ММ и Кд дочернего полимера [18-21].

Существует несколько путей проведения матричной полимеризации: поликонденсация, радикальная или ионная полимеризация, привитая

полимеризация, или полимеризация, сопровождаемая раскрытием цикла мономера.

Схему матричной полимеризации (а-цепная, б- конденсационная) принято изображать следующим образом:

где A- мономерное звено матрицы, а B, B - мономер, мономерное звено и концевое звено (активный центр) дочерней цепи.

Матрицей может служить как гомополимер, так и сополимер. В матричной полимеризации может участвовать более одного мономера. Дочерняя цепь растет вдоль (следовательно, под контролем) цепи матрицы благодаря прикреплению этих цепей друг к другу кооперативной системой нековалентных (кулоновских, водородных и др.) связей между звеньями матрицы и дочерней цепи, матрицу можно рассматривать как одномерный адсорбент. «Адсорбция» мономера может быть сильной вплоть до образования стабильного комплекса, обратимой или очень слабой.

Как писал И.М. Паписов, образование устойчивых кооперативных систем межмолекулярных нековалентных связей между матрицей и дочерним полимером является общим свойством и признаком матричной полимеризации [18].

В МП наблюдаются, так называемые, *матричные эффекты*, которые можно разделить на три вида, однако они все, так или иначе, в разной степени проявляются в МП [22-25]:

• кинетический эффект заключается в увеличении или уменьшении скорости полимеризации;

- молекулярно-массовый эффект заключается во влиянии матрицы на ММ дочернего полимера;
- структурный эффект заключается в контролировании химического строения, состава и изомерии дочернего полимера.

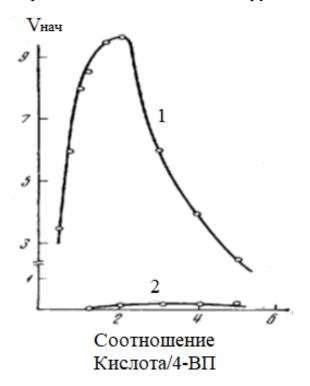
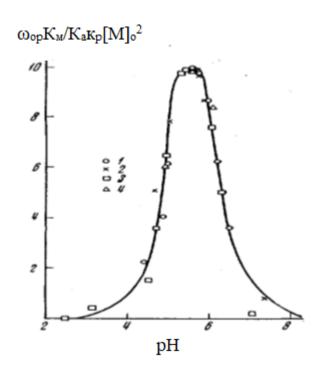

Механизм матричной полимеризации можно разделить на два крайних случая. Половинским С. введены для этого термины zip и pick up [26], механизмы которых схематично представлены на рисунках 1.5 и 1.6, соответственно.

Рисунок 1.5 - Матричная полимеризация по механизму «zip»

Рисунок 1.6 - Матричная полимеризация по механизму «pick up»


Механизм zip характерен, когда мономер образует устойчивый комплекс с матрицей из-за сильных межмолекулярных нековалентных связей [27-30]. Механизм ріск ир характеризуется тем, что межмолекулярные нековалентные связи между мономером и матрицей достаточно слабы (пример водородные связи), устойчивый комплекс между мономером и матрицей не формируется. Поэтому полимеризации макромолекулы дочернего начале полимера формируются растворе, a при достижении определенной степени полимеризации (критической) начинают взаимодействовать с матрицей и далее весь рост дочерней цепи происходит под контролем матрицы.

Ярким примером, иллюстрирующим выше изложенные характерные признаки МП, является поликонденсация [31,32] (далее полимеризация) 4-винилпиридина на матрицах поликислот. Кинетический эффект заключается в увеличении скорости полимеризации (рисунок 1.7). Молекулярно-массовый и структурный эффекты заключаются в сорбции мономера на матрице (увеличение локальной концентрации) и активации (образование реакционноспособных ионных пар с отрицательно заряженными ионогенными группами матрицы).

Рисунок 1.7 — Зависимость начальной скорости полимеризации в присутствии полиакриловой (1) и уксусной (2) кислот от мольного соотношения [кислота]/ [4-винилпиридин] при 20° C; [4-винилпиридин] = 0,1 моль/л

Максимум скорости полимеризации наблюдается при полной диссоциации 4-ВП, т.е. полного связывания с матрицей (рисунок 1.8). Этот пример можно отнести к МП по механизму типа «zip».

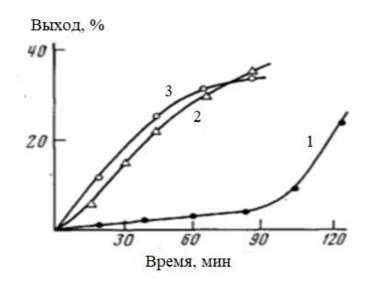
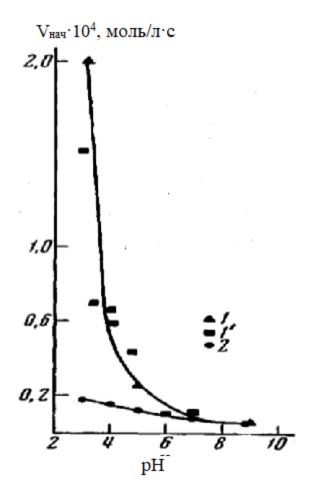


Рисунок 1.8 — Зависимость приведенной начальной скорости $\omega_{op}K_{M}/K_{a}\kappa_{p}[M]_{o}^{2}$ полимеризация 4-ВП в присутствии различных поликислот при 20°С. 1 — рН задано соотношением [ПАК]: [4-ВП] при [4-ВП] = 0,1 моль/л; 2 — рН задано добавлением НС1 или NaOH при [ПАК] = [4-ВП] = 0,1 моль/л; 3 — рН задано добавлением полифосфата и 4 — полиэтиленсульфокислоты при [4-ВП] = 0,1 моль/л

На МП 4-ВП влияет добавление низкомолекулярных солей и органических оснований [33]. Эффект добавки заключается в уменьшении скорости полимеризации, за счет конкуренции за адсорбцию на матрице, и имеет линейную зависимостью от концентрации добавки.


МП по механизму типа «ріск ир»реализуется в случае полимеризации МАК и АК на полиэтиленгликоле (ПЭГ) [34]. Скорость полимеризации при введении ПЭГ снижается, но после связывание всех цепей ПЭГ скорость полимеризации возрастает и становится равной скорости полимеризации в растворе в отсутствие ПЭГ (рисунок 1.9). Стоит заметить, что в водно-метанольных смесях при увеличении содержания метанола скорость полимеризации снижается, но при

добавлении ПЭГ она остается одинаковой и не зависит от соотношения воды и метанола.

Рисунок 1.9 – Зависимость выхода полимера от времени: [MAK] = $3.5 \cdot 10^{-2}$, [K₂S₂O₄] = $3.7 \cdot 10^{-4}$ моль/л, MM_{пэг} = 15000, 50°C: $1 - [\Pi \exists \Gamma] = 0.1 \cdot 10^{-2}$; $2 - [\Pi \exists \Gamma] = [MAK] = 0.1 \cdot 10^{-2}$ моль/л, 3 - полимеризация без $\Pi \exists \Gamma$

Матрица ПЭГ не связывает мономеры АК, МАК сильными электростатическими связями, так как не обладает зарядом. Поэтому ее влияние наблюдается только при достижении критической степени полимеризации [34-37], т.е. при достижении растущей цепи определенной длины (при достижении степени полимеризации 10-15), тогда матрица ПЭГ перехватывает ее и дальнейший рост происходит уже под влиянием матрицы. После этого вокруг матрицы создается «облако» из мономера и происходит дальнейший рост на ней. Поэтому полимер содержит две разные структуры полимерной цепи: образовавшиеся до взаимодействия с матрицей и после. Доказательством этого может быть малая зависимость скорости полимеризации МАК от рН, тогда как в водном растворе скорость полимеризации МАК сильно зависит от рН (рисунок 1.10).

Рисунок 1.10 — Зависимость начальных скоростей полимеризации МАК от рН среды 50°C, $[K_2S_2O_4] = 3.7 \cdot 10^{-4}$ моль/л, $MM_{\tiny \rm ПЭГ} = 15000$: $a - [MAK] = 3,5 \cdot 10^{-2}$ моль/л, 1, 1' — без Π Э Γ , $2 - [\Pi$ Э Γ] = [MAK]

Матрицы могут конкурировать друг с другом за связывание с мономером [38]. Если в системе есть две матрицы, отличающиеся по силе взаимодействия с мономером, то полимеризация МАК, начинается на более сильной матрице поливинилпиридине, а после ее исчерпания продолжается на ПЭГ. Конкуренцию между матрицами можно регулировать путем изменения степени полимеризации и соотношения матриц [39, 40].

Матричная полимеризация может начинаться как в растворе, так и на матрице, причем оба процесса могут быть параллельными. Обобщенная схема кинетики матричной полимеризации для «zip»и «pick up» механизмов можно представить следующим образом [26]:

А. Полимеризация в растворе

$$I \xrightarrow{\kappa_{pacn.}} 2R^{\bullet}$$

2. инициирование

$$R^{\bullet} + M_{c \omega \delta o \delta o \delta} \xrightarrow{\kappa_{u + u u u}} P^{\bullet}_{\epsilon p - p e}$$

3. рост макрорадикала

$$P_{\mathfrak{e}\,p-pe.}^{\bullet} + M_{ceo\~oo}. \xrightarrow{\kappa_{pocm.\mathfrak{e}\,p-pe}} P_{\mathfrak{e}\,p-pe,n+1}^{\bullet}.$$

4. обрыв цепи

$$P_{\mathfrak{s}\,p-pe.,n.}^{\bullet} + P_{\mathfrak{s}\,p-pe.,m.}^{\bullet} \xrightarrow{\kappa_{o\acute{o}pbib.\mathfrak{s}\,p-pe}} P_{\mathfrak{s}\,p-pe,n+m.}$$

Б. Взаимодействие с матрицей

1. адсорбция мономера на

$$T + M_{CBOOOO} \xrightarrow{\kappa_{a\partial COOP}} M_{Ha Mamp}$$

матрице

2. Адсорбция радикала на

$$P_{\mathit{6}\,\mathit{p-pe.,n.}}^{\bullet} + T \xrightarrow{\kappa_{\mathit{adcop.makpomon.}}} P_{\mathit{Ha}\,\mathit{mamp.,n.}}^{\bullet}$$

матрице

3. Адсорбция полимера на

матрице

$$P_{e\,p-pe,n.}+T \xrightarrow{\kappa_{a\partial cop. \mathit{Makpomon.}}} P_{\mathit{Ha\ Mamp.,n.}}$$

Радикальные процессы на матрице В.

1. рост на матрице

$$P_{\text{на матр.,n.}}^{\bullet} + M \xrightarrow{\kappa_{pocm.,na \text{матр.}}} P_{\text{на матр.,n+1.}}^{\bullet}$$

2. обрыв цепи

рекомбинаций матриц

$$P_{\text{на матр.,n.}}^{\bullet} + P_{\text{на матр.,m.}}^{\bullet}$$

$$\xrightarrow{\kappa_{\textit{обрыв.,на матр.}}} P_{\textit{на матр.,}n+m}.$$

3. обрыв цепи путем

$$P_{\textit{в p-pe.,n.}}^{\bullet} + P_{\textit{на матр.,m.}}^{\bullet}$$

взаимодействия радикала

$$\xrightarrow{\kappa_{oбрыв.,на \ матр.или \ в \ p-pe}} P_{\textit{на \ матр.,n+m.}}(\textit{ или } P_{p-pe.,n+m.})$$

матрицы с радикалом роста

из раствора

Общее уравнение скорости по «zip» механизму:

$$-\frac{d[M]}{dt} = \kappa_{\text{pocta, zip}}[P_{\text{наматр.}}^{\bullet}]$$

Общее уравнение скорости по «ріск up» механизму:

$$-\frac{d[M]}{dt} = (\kappa_{\text{роста,B p-pe}}[P_{\text{B p-pe.}}^{\bullet}] + \kappa_{\text{роста,pickup}}[P_{\text{Ha Matp.}}^{\bullet}])[M]$$

В таблице 1.2 показаны порядки по инициатору (n) и мономеру (m).

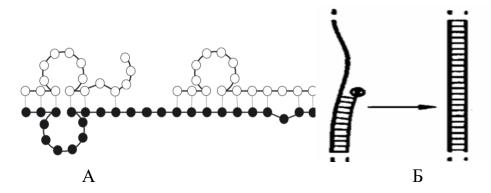
Таблица 1.2 – порядки инициатору (n) и мономеру (m) при матричной полимеризации

Мономер	Матрица	Растворитель	n	m	Литература
Акриловая кислота	Полиэтиленимин	Вода	1	1	41
N-винилпирилидон	Полиакриловая кислота	N,N- диметилформамид	0- 0,3	1,5	42
Полистиролсульфона т	Ионен	Вода/ изопропиловый спирт	1	1	43
Метакриловая кислота	Ионен	Вода	0,8	0,3*	44
Метакриловая кислота	Ионен	Вода	0,8	0,9**	44
Метилметакрилат	Изо- полиметилакрилат	N,N- диметилформамид	0,35 - 0,51	1	45
Акриловая кислота	Полиэтиленгликоль	Вода	0,7	1,1	6
Метакриловая кислота	Полиэтиленгликоль	Вода	0,7	1	46
Метакриловая кислота	Полиэтиленгликоль	Вода	0,5	1	47
Метакриловая кислота	Поли-2- винилпиридин	N,N- диметилформамид	0,23 - 0,26	1,5	48
Метакриловая кислота	Поливинилпирилидо н	Вода	0,5	1	48
Акриловая кислота	Сополимер винилпирилидона с акриламидом	Вода	0,97	1,42	49

^{*[}мономер]/[матрица]>1;**[мономер]/[матрица]<1

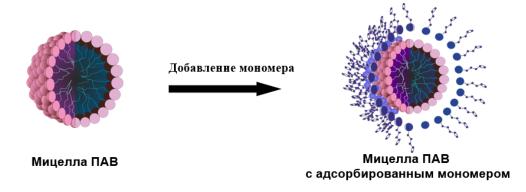
Данные, приведенные в таблице, показывают, что матрица влияет на кинетику полимеризации т.к. происходит отклонение от классической радикальной полимеризации, при которой n=0,5, m=1. Если порядок по m=1,5 или близок к нему, то это указывает на адсорбцию мономера и протекание

матричной полимеризации по «zip» механизму. Максимум скорости полимеризации наблюдается в эквимольном соотношении матрицы и мономера, но есть и исключение, когда максимум наблюдаются до или после эквимольного соотношения. Это зависит как от природы мономера и матрицы, так и от среды в которой проводится полимеризация [26]. Матрица может, как уменьшать, так и увеличивать скорость полимеризации, но ее главным преимуществом является, то, что она контролирует константы роста и обрыва цепи, а также и расположение мономера, тем самым влияя на структуру получаемого полимера и его молекулярно-массовые характеристики.


В результате МП образуется поликомплексы (ПК), называемые также полиэлектролитные комплексы (ПЭК), интерполимерными (ИПК) либо полимерполимерными комплексами (ППК). Поликомплексы достаточно устойчивы и разделить их на полимерные компоненты можно только, создав условия, при которых кооперативные системы межмолекулярных связей разрушаются [18].

Получаемые продукты матричной полимеризации могут быть как нерастворимыми в воде или водорастворимыми. Это зависит от соотношения реагентов, при избытках одного возможно получения водорастворимого комплекса.

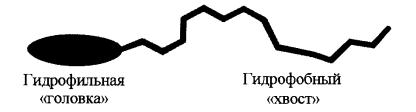
Таким образом, методом МП можно получать (со)полимеры с регулируемой ММ, Кд, строением полимерной цепи. Например, при полимеризации ММА на матрице изо-ПММА в ДМФА, образуется стереокомплекс изо- и синдиотактического строения ПММА. При поликонденсации мочевины и формальдегида на ПАК в кислых средах получают полимер, обогащенный звеньями «б», не свойственными для обычной поликонденсации мочевины и формальдегида [18].


ПК получаемые матричной полимеризацией имеют более совершенную структуру, нежели ПК получаемые смешением двух полимеров. В их структуре отсутствуют дефекты в цепи в виде несвязанных петель. На рисунке 1.11

показаны дефекты в ПК при смешении двух полимеров, для матричной полимеризации их доля значительно меньше [18].

Рисунок 1.11 – Дефекты в цепи полимера при смешении полимеров с образованиме ПЭК (A). Матричная полимеризация с образованием лестничного полимера (Б)

Серьезным недостатком матричной полимеризации является трудность отделения полученного полимера от матрицы. Одним из вариантов решения этой проблемы является замена макромолекулярной матрицы на мицеллы ПАВ. При такой замене получают ПЭ с ММ более 10^6 и пониженным Кд по сравнению с ПЭ полученными в водном растворе [50, 51].



Для лучшего понимания МП на мицеллах ПАВ необходимо подробней остановиться на мицеллообразовании ПАВ, так как мицеллы ПАВ, являясь матрицей, ответственны за свойства ПЭ.

1.3 Мицеллы ПАВ в качестве матрицы для полимеризации полиэлектролитов

Поверхностно-активными веществами (ПАВ) называют вещества, которые имеют дифильную молекулу, т.е. молекулу, состоящую из полярной

(лиофильной) и неполярной (липофильной/лиофобной) частей (рисунок 1.12). Характерной особенностью ПАВ, определяющей все фундаментальные свойства этих веществ, является то, что обе части связаны ковалентно друг с другом.

Рисунок 1.12 — Схематическое изображение молекулы поверхностноактивного вещества [52]

ПАВ характеризуются ярко выраженной способностью адсорбироваться на поверхностях и на межфазных границах. Так же эти вещества снижают избыток межфазной поверхностной энергии и способны образовывать агрегаты.

ПАВ классифицируют на ионогенные и неионогенные. В свою очередь ионогенные делится на анионогенные, катионогенные, цвиттер-ионные и полиамфолиты.

В анионных ПАВ полярные группы приобретают отрицательный заряд в результате диссоциации. ПАВ этого класса обычно представлены веществами, в структуре которых присутствуют карбоксилатные, сульфатными, сульфонатные и фосфатные группы. Анионные ПАВ являются самыми распространенными из-за простоты из-за низкой стоимости производства, их используют в моющих средствах, различных композициях и т.д. В катионных ПАВ полярные группы приобретают положительный заряд в результате диссоциации. Катионные ПАВ обычно содержат атом азота и представлены аминами или четвертичными аммониевыми соединениями. Амины проявляют свойства ПАВ только в протонированном состоянии; поэтому их нельзя использовать при высоких рН, а четвертичные аммониевые соединения нечувствительны к изменениям рН. Их используют как антикоррозионные агенты [53], антистатические агенты, диспергаторы, флотационные собиратели, бактерициды и др. В неионных ПАВ полярные группы не имеют заряда. ПАВ этого класса представлены веществами, в структуре которых присутствуют полиэфирные либо полиэтоксильные

фрагменты. Неионные ПАВ нечувствительны к жесткой воде, на их физикохимические свойства мало влияют электролиты. В цвиттер-ионных ПАВ имеется две противоположно заряженные группы. Положительно заряженная в основном представлена аммониевой группой, а отрицательно заряженная группа в основном карбоксилат-ионом.

Мицеллообразующие ПАВ в зависимости от концентрации в растворе способны образовывать как истинные растворы, так и коллоидные. После образования истинного раствора происходит предмицелярная ассоциация, состоящая из двух молекул ПАВ [54-57] и только после превышения некоторого порога концентрации начинается мицеллообразование. Предел концентрации при образовываться мицеллы, котором начинают называется критической концентрацией мицеллобразования (ККМ₁). Из-за способности образовывать агрегаты (мицеллы) ПАВ проявляют специфичное свойство – увеличение растворимости малорастворимых веществ, которое называется солюбилизация. На этом свойстве основано прикладное применение ПАВ, например, моющее действие, мицеллярный синтез, флотация [58], растворение малорастворимых соединений для фармацевтики и т.д.

ККМ можно определить различными методами (рисунок 1.13). Для изучения мицеллобразования процессов ПАВ используют различные методы: тензиометрию [59], калориметрию [60], кондуктометрию [61, 62] солюбилизацию флуоресценцию [63, 64], ЭПР-спектроскопию [65, 66], ЯМРкрасителя, диффузометрию [67, 68]. Эта величина не является точно определенной величиной (как, например, температура кипения), а является узким диапазоном концентраций в котором происходит формирование мицелл, что и вызывает сложности определении [69]. Как видно 1.13, при рисунка экспериментальные зависимости различаются в зависимости от метода изучения, поэтому разные методы измерения дают разные значения ККМ и не всегда можно точно определить ее значение.

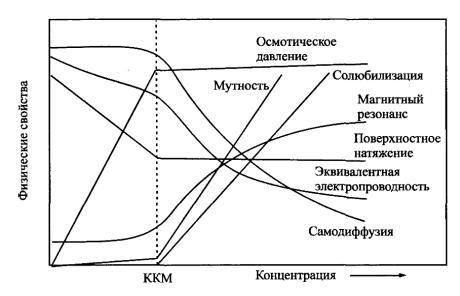


Рисунок 1.13 — Схематическое представление концентрационных зависимостей некоторых физических свойств раствором мицеллообразующих ПАВ [52]

Более того, строение ПАВ также влияет на точность определения ККМ: для длинноцепочечных ПАВ она переделяется более точно и различные методы дают совпадающие результаты, а для короткоцепочечных ПАВ картина выглядит иначе, и требует более тщательного измерения.

После того как концентрация ПАВ в растворе становится равной ККМ₁ или больше ее, то в растворе образуются мицеллы. В основном образуются мицеллы сферического типа, их размеры варьируются и непостоянны. Если среда полярная, то образуется прямая мицелла (радикальные хвосты обращены внутрь мицеллы, а полярные головки наружу), если не полярная - то обратная, такие мицеллы показаны на рисунке 1.14.

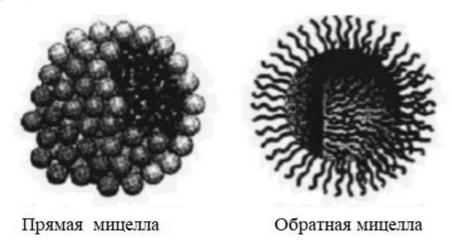


Рисунок 1.14 — мицеллы в полярной и не полярной среде

Прямая сферическая мицелла состоит из ядра и двойного электрического слоя (ДЭС). Ядро мицеллы составляет углеводородные радикалы ПАВ. ДЭС состоит из двух слоев: плотного и диффузионного. Плотный состоит из потенциал - определяющих ионов (головки молекулы ПАВ) и части адсорбированных противоионов. Противоионы образуются при диссоциации молекулы ПАВ, например, олеат натрия при диссоциации образует потенциал образующий ион с отрицательным зарядом, а противоионы имеют знак положительный и состоят из ионов натрия. Вторая часть противоионов образует диффузный слой. На рисунке 1.15 представлена схема строения мицеллы. При образовании мицеллы ее радиус практически равен вытянутой молекуле ПАВ, но для описания ее как частицы в растворе надо учитывать гидродинамический радиус [70].

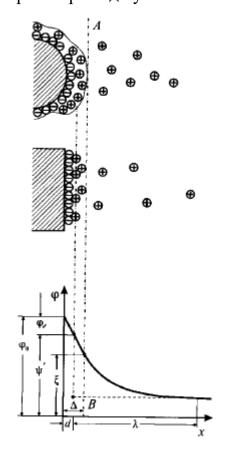


Рисунок 1.15 — Схема строения мицеллы и распределения потенциала в ДЭС [71]

где, φ_0 – полный потенциал, d – это расстояние от центров потенциалобразующих ионов и до центров противоионов адсорбционного слоя, Ψ - потенциал на границе плотной и диффузионной части, $\phi_{\rm d}$ – потенциал плотной части, потенциал расстоянии скольжения возникает на поверхности и обозначает переход из плотного слоя диффузионный, λ – эффективная диффузионной части, которая представляет собой расстояние, где потенциал Ψ уменьшается в e раз.

При дальнейшем увеличении концентрации ПАВ происходит эволюция формы мицеллы. Так, в литературе описаны [72-76] четыре мицеллярных перехода. KKM_1 соответствует образованию сферических мицелл, дальнейшие увеличение концентрации ПАВ приводит к росту количества

мицелл и увеличению их плотности упаковки (чисел агрегации), ККМ₁₋₂ отвечает формированию сферических ПАВ с более потной упаковкой. ККМ₂ характеризует изменение формы мицелл из сферической в эллипсоидную (сфероидную), происходит резкое увеличение чисел агрегации. ККМ₃ характеризует изменение формы мицелл из сфероидной в цилиндрическую, а при дальнейшем росте концентрации цилиндрические мицеллы переплетаются и образует сетку зацеплений и тогда в растворе уже не существует дискретных мицелл. Эволюция мицелл представлена на рисунке 1.16. Цилиндрические мицеллы должны обладать наибольшей дисперсией по размерам мицелл, т.к. они могут бесконечно расти вдоль оси цилиндра.

ККМ зависит от множества факторов: строения ПАВ, его типа, наличия растворенных веществ и пр. ККМ ионных ПАВ выше, чем у неионных ПАВ, но подчиняется общему правилу: чем больше углеродный хвост, тем ККМ ниже.

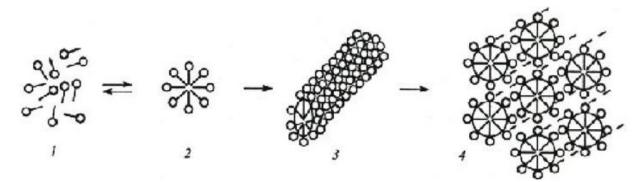
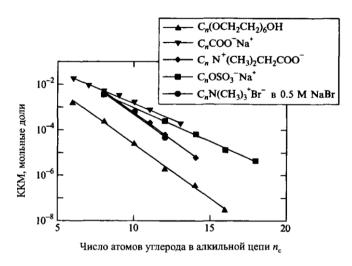



Рисунок 1.16 — Схема эволюции мицеллообразования при увеличении концентрации ПАВ. 1 — молекулярный раствор, 2 — сферические мицеллы, 3 — цилиндрические мицеллы, 4 — гексагональная структура (сетка зацеплений цилиндрических мицелл)

В случае разветвления алкильных цепей, наличия двойных связей или ароматических групп, ККМ увеличивается. Зависимость ККМ от числа атомов углерода в алкильной цепи показано на рисунке 1.17.

Рисунок 1.17 – Зависимость lg ККМ от числа углерода в алкильной цепи ПАВ [52]

Влияние внешних факторов на ККМ. Давление практически не влияет на ККМ вплоть до высоких значений. Температура влияет на ККМ у разных видов ПАВ по разному. Для ионых ПАВ ККМ с ростом температуры увеличивается, но проходит через минимум, который объсняется уменьшением растворимости углеводородов в воде. Для неиононых ПАВ при увеличении температуры ККМ уменьшается. На рисунке 1.18 представлена зависимость ККМ от температуры.

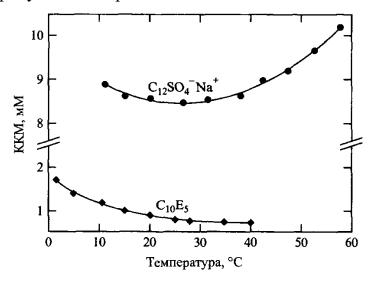


Рисунок 1.18 – Зависимость ККМ от температуры [52]

С температурой связана еще одна важная характеристика ПАВ, называемая точкой Крафта, которая характеризует нижний температурный предел растворения ионных ПАВ. Ниже этой температуры ПАВ может существовать только в молекулярном виде. Так, например, для додецилсульфата натрия она

равна 18°C, а замена иона натрия на калий увеличивает точку Крафта до 40°C [77]. Для неионных ПАВ, наоборот, существует верхний температурный предел, после которого происходит помутнение раствора.

Добавки неорганических веществ. Самое сильное и значимое для практики влияние на ККМ оказывают растворенные в растворе вещества. Например, добавка одновалентного электролита в раствор одновалентного ПАВ снижает сильно ККМ и эффект зависит от количества этого электролита. На рисунке 1.19 представлено влияние хлорида натрия на ККМ₁ алкилсульфатов натрия. Эффект более ярко выражен для длинноцепочечных ПАВ, чем для короткоцепочечных. На неионные ПАВ одновалентные соли мало влияют. Также ККМ сильно зависит от заряда противоиона и чем он выше, тем ниже ККМ.

Введение солей может увеличить (уменьшить) ККМ. В таблице 1.3 приведены ККМ ПАВ в разных солях[72]. Из них видно, что ККМ₁ у всех ПАВ понижается, в то время как последующие ККМ увеличиваются, но у соли фторида натрия уменьшаются.

Рисунок 1.19 — Зависимость добавки хлорида натрия на ККМ алкилсульфатов натрия. Сплошные линии — предсказания электростатической теории, с_s — концентрация соли [52]

Это связано с тем, что фторид натрия уменьшает гидратацию молекул ПАВ, тем самым понижая степень их ионизации и увеличивая плотность упаковки в мицелле в отличие от других солей, которые увеличивают степень гидратации ПАВ. Такое изменение степени гидратации молекул ПАВ объясняется разным влиянием этих анионов на структуру воды [72].

Таблица 1.3 — Зависимость от природы электролита (0,1M) критической концентрации мицеллообразования додецилсульфата натрия при 25°C

ККМ, мМ	Без электролита	Электролит			
		NaF	NaCl	NaBr	NaI
KKM ₁	8,6	3,6	3,8	4,2	4,7
KKM ₁₋₂	41	36	100	130	170
KKM ₂	70	48	160	240	320
KKM ₃	150	50	190	310	400

Если неорганические вещества в основном влияют на потенциал образующие ионы и, тем самым, уменьшают электростатическое оталкивание молекул ПАВ в мицелле, то органические не только снижают электростатическое оталкивание, но и могут встраиваться в мицеллу [78-83]. Например, добавление дифильных неионных веществ, таких как спирты, уменьшают ККМ (рисунок 1.20), но могут и увеличивать [84, 85]. Причем, чем больше длина алькильного фрагмента, тем молекулам спирта выгоднее локализоваться в мицелле. Так же действуют неионные ПАВ в растворах ионных и другие неионные вещества дифильного строения. Например, следовые количества додецилового спирта в ДДСН сильно влияют на ККМ и уменьшают его за счет солюбилизации в мицелле и образования смешенной мицеллы [86].

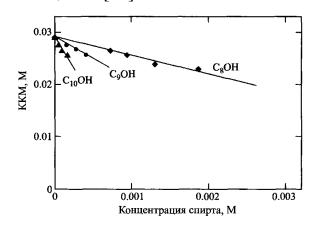
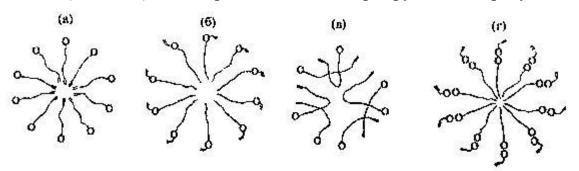


Рисунок 1.20 – Влияние спиртов на ККМ [52]

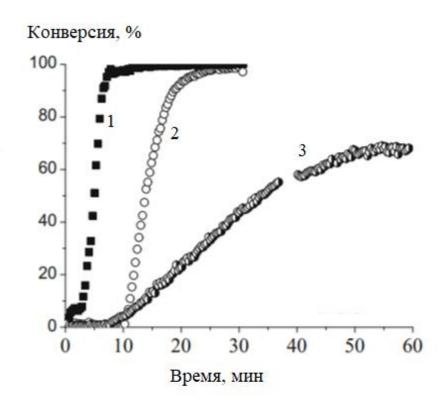

Другим примером может служить добавления бензоата натрия [87], тимола или холина хлористого [88] и других органических солей [89,90] к водному раствору ПАВ. Так, в работе отмечается, что в отличии от хлорида натрия, даже незначительные добавки бензоната натрия уменьшают ККМ ПАВ, вследствие его встраивания в мицеллы ПАВ в приповерхностый слой.

Исходя из всего выше сказанного, можно резюмировать, что размеры мицелл ПАВ можно регулировать изменением концентрации ПАВ, температуры, добавками солей и органических веществ. Поэтому мицеллы ПАВ являются чрезвычайно привлекательными для использования в качестве матрицы в МП. Также необходимо отметить, что ПАВ чувствительны к ионной силе раствора и при высоких значениях ионной силы они способны высаливаться из раствора, что открывает возможность достаточно легкого разделения матрицы и дочернего полимера.

1.4 Поверхностно-активные мономеры

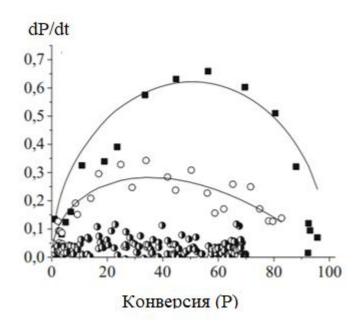
В данной диссертации под матричной полимеризацией на мицеллах ПАВ подразумевается, что ПАВ и мономер добавляются в систему по отдельности и в системе существуют четыре вида ионов: мономер, ПАВ и их противоионы. Но данную систему можно рассмотреть и в терминологии ПАМ.

Поверхностно-активные мономеры (ПАМ) — это мономеры способные понижать поверхностное натяжение растворов в частности воды и образовывать ассоциаты (мицеллы). Их подразделяют на четыре группы [91] (рисунок 1.21).


Рисунок 1.21 – Виды ПАМ

- А) Полимеризуемая группа локализована в гидрофобной части молекулы мономера полимеризация в прямой мицелле. Обычно используют терминальные алкены, полимеризация проходит в жестких условиях, полученные полимеры имеют малую степень полимеризации от 10 до 80, а полимеризация не обеспечивает сохранение структуры мицеллы.
- Б) Полимеризуемая группа локализована вблизи полярной части молекулы мономера полимеризация на периферии прямой мицеллы. Используются производные акрилоил-этаноламина, гидроксиэтилакрилата, аллиламина, например, такие объекты описаны в работах В.В. Егорова. Получают полимеры с гребнеобразной структурой, где полярная группа находится очень близко к основной цепи. Из-за этого многие полимеры утрачивают растворимость в воде.
- В) Полярная полимеризуемая группа локализована в гидрофобной части молекулы полимеризация, вероятно, на периферии прямой мицелл. Часто используют эфиры или амиды акриловой и метакриловой кислоты, для них характерна высокая скорость полимеризации, которая приводит к образованию водорастворимых гребнеобразных полимеров, с ММ 10^5 и $K_{\pi} = 1,3-1,8$.
- Г) Мономеры, в которых реализуется полимеризация противоиона, а получаемый полимер является полиэлектролит-коллоидным комплексом (ПЭКК). Используются ионные мономеры с противоположным зарядом по отношению к ПАВ. Так как степень связывания мицелл ПАВ примерно равна 0,6-0,7, то полимеризация происходит, как в растворе, так и на поверхности мицеллы. Получают нерастворимые в воде ПЭК. Исключением могут быть полимеры на основе алкиламмоний винилбензоатов.

Для данной диссертации наиболее близким является ПАМ, в котором полимеризующий компонент является противоионом (тип Г) и в системе существуют два вида ионов – ПАВ и мономер [92-101]. Для них свойственны все закономерности мицеллообразования, как для обычных ПАВ. Для полимеризации ПАМ, необходимо чтоб концентрация мономера была выше ККМ, тогда концентрация мономера приближается к блочной полимеризации и её скорость выше, чем в гомогенном растворе (без мицелл). Однако молекулы мономера не


могут принадлежать конкретным мицеллам, а могут обмениваться между средой и другими мицеллами. Поэтому мицеллярную полимеризацию можно рассматривать как гомогенную, так как основным продуктом матричной полимеризации является раствор полимера или осадок, а не латекс, как в эмульсионной полимеризации.

Научной группой под руководством Зорина И.М. подробно исследована полимеризация мономеров типа Г [102]. Так в работе [103] выполнена исследование кинетики полимеризация мономера додециламмоний 2-акриламидо-2-метилпропансульфокислота. В работе показано, что полимеризация в воде при образовании прямых мицелл проходит быстрее, чем в обратных мицеллах (в диоксане). На рисунке 1.22 показаны конверсионные кривые мономера в разных растворителях. В смеси диоксан-вода (80/20 % об.) полимеризация проходит в гомогенном режиме и гораздо медленнее, так как в такой смеси не образуется мицелл. Порядок по инициатору в воде и в диоксане близок к 0,5, а порядок по инициатору больше единицы.

Рисунок 1.22 — Зависимость конверсии от времени для полимеризации додециламмоний 2-акриламидо-2-метилпропансульфокислота в различных растворителях

Полученные результаты были описаны в теории микроэмульсионной полимеризации, предложенной Морганом и Колером [104]. На рисунке 1.23 представлены данные рисунка 1.22, обработанные в рамках данной теории. Куполообразные зависимости в воде и диоксане говорят о микроэмульсионном режиме полимеризации. Тогда как в гомогенном режиме (смесь диоксан-вода) такого не наблюдается.

Рисунок 1.23 — Зависимость скорости полимеризации от конверсии в теории микроэмульсионной полимеризации

Авторы работ [103] отмечают, что визуально полимер выпадал в осадок при конверсии 60-70%, однако по данным ЯМР и кондуктометрии ПЭКК образовывался раньше и находился в метастабильном состоянии. Продуктом полимеризации являются нерастворимые ПЭКК, выделенные ПЭ характеризуются ММ выше миллиона и Кд ниже, чем для полимеров, полученных в гомогенных растворах.

Обобщая все выше сказанное можно сказать что, полимеризация ПАМ типа Г дает ПЭ с высокой ММ массой и низкой Кд, кинетику полимеризации можно описать в теории микроэмульсионной полимеризации.

1.5 Закономерности образования комплексов полиэлектролит – ПАВ

Непосредственным продуктом полимеризации ионогенных мономеров в мицеллярных растворах ПАВ являются комплексы полиэлектролит — ПАВ, интерес к которым обусловлен широкими возможностями их практического применения. Рассмотрим общие закономерности формирования комплексов полиэлектролит — ПАВ.

Формирование мицелл ПАВ в присутствии полиэлектролита имеет энтропийную природу. Как следует из приведенной на рисунке 1.24 схемы поликатиона анионных ПАВ, реакции примере c электростатического связывания компонентов комплекса в раствор выделяются низкомолекулярные противоионы, которые в растворе полимера в значительной цепи. Поэтому, образование степени сконденсированы на мицелл макромолекулах полиэлектролитов сопровождается дополнительным выигрышем энтропии системы за счет высвобождения малых ионов. При этом, связывание ПАВ с полиэлектролитом начинается при некоторой пороговой концентрации ПАВ в растворе, называемой критической концентрацией ассоциации (ККА) ПАВ.

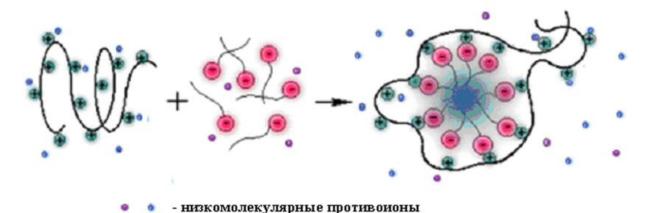
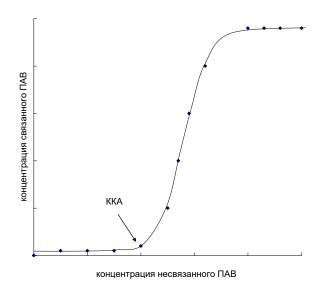
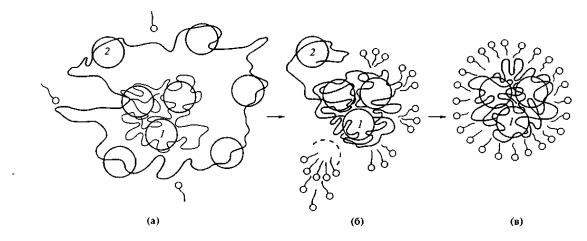


Рисунок 1.24 — Схема реакции взаимодействия поликатиона с анионных ПАВ

Традиционным методом изучения связывания ПАВ с полиэлектролитом и определения ККА является построение так называемых изотерм связывания [105]. На рисунке 1.25 приведен общий вид изотермы связывания дифильных ионов

мицеллобразующего поверхностно-активного вещества молекулой противоположно заряженного полиэлектролита.




Рисунок 1.25 — Общий вид изотермы связывания ионов ПАВ противоположно заряженным полиэлектролитом

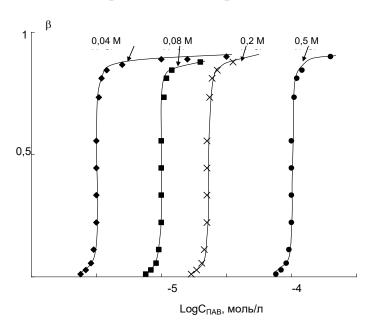
Построение изотерм связывания основано на момкип измерении концентрации несвязанного ПАВ (C_{free}) в растворе методом потенциометрии с использованием ион-селективных электродов. Изотермы связывания представляются в виде зависимости мольной доли звеньев полимера, связанных с ионами ПАВ, β , от концентрации свободного ПАВ, C_{free} , находящегося в растворе в равновесии с комплексом полиэлектролит-ПАВ. Из рисунка 1.25 видно, что, при концентрации ионов ПАВ ниже пороговой, β мало и возрастает пропорционально концентрации ионов ПАВ. В этой области концентраций ионы ПАВ связываются полиэлектролитом только электростатических взаимодействий за счет противоположно заряженных групп ПАВ и полимера. Начиная с некоторой пороговой концентрации ПАВ (ККА) в растворе начинается резкий рост β , причем максимального значения β достигает в очень узком интервале ПАВ. Это свидетельствует о концентраций несвязанного кооперативном ПАВ характере ионов c противоположно связывания заряженным полиэлектролитом. Другими словами, константа связывания иона ПАВ со звеном цепи полиэлектролита, которое соседствует со звеном уже связанным с ионом

ПАВ, в u раз выше, чем константа связывания с изолированным звеном [106-108]. кооперативности $u=exp(\sigma/kT)$, где величина обусловлена Параметр гидрофобными взаимодействиями алифатических радикалов ПАВ и определяет кооперативность реакции полиэлектролита с противоположно заряженными ионами ПАВ. Такое рассмотрение предполагает, что в продуктах реакции полиэлектролитов с ПАВ молекулы ПАВ должны образовывать «гидрофобные Действительно, в работах кластеры» ИЛИ внутримолекулярные мицеллы. [109]было экспериментально показано, что наличие мицеллярной фазы является фундаментальным свойством и необходимым условием образования комплексов полиэлектролит - ПАВ. Таким образом, молекула полиэлектролита играет роль мультизарядного «макро»-противоиона мицеллы уменьшающего поверхностный заряд мицеллы за счет электростатического связывания. В результате ККА ПАВ в присутствии полиэлектролитов оказываются на 1-4 порядка ниже, чем ККМ тех же ПАВ в растворе [110].

В работе [111] установлено, что кооперативный характер связывания усиливается с увеличением степени кватернизации полииона и с увеличением ионной силы раствора. Для неионных полиэлектролитов это снижение незначительно; для ионогенных полиэлектролитов величина ККА снижается на два-три порядка по сравнению с ККМ.

В работе [112] показано, что с увеличением содержания ПАВ в системе выше порога насыщения полииона ионами ПАВ происходит компактизация макромолекулярного клубка И при определенных концентрациях (сравнимых с ККМ) наблюдается «выброс» значительной части ионов ПАВ из ПЭК и их обратное замещение на противоионы полиэлектролита (рисунок 1.26). Структурный переход трактуется в рамках теории конформационного перехода клубок-глобула, согласно которому по мере включения ПАВ в объем клубка макромолекула сжимается, ионогенные группы нейтрализуются, суммарная плотность заряда увеличивается, и к моменту насыщения объема макромолекулы ионами ПАВ полиэлектролит можно считать слабозаряженным и глобулярным.

а – состояние ассоциата в области насыщения; б – состояние ассоциата в области перехода; в – состояние ассоциата после завершения перехода; 1 – эффективные, 2 – неэффективные внутримолекулярные мицеллы ПАВ **Рисунок 1.26**— Схематическое представление перехода клубок-глобула в водных растворах

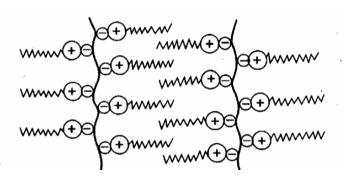

Конденсация противоионов в этом случае является лавинообразным процессом, приводящим практически полному осаждению противоионов на макромолекулах. При достижении некоторой критической величины плотности заряда макромолекула коллапсирует: вытеснявшиеся по мере связывания ПАВ противоионы полиэлектролита "всасываются" в глобулизирующийся комплекс, а неэффективные внутримолекулярные мицеллы ПАВ разрушаются, и молекулы ПАВ высвобождаются из объема глобулы. Поскольку основной причиной, приводящей к переходу клубок-глобула, в данной системе являются молекулы ПАВ, на точку перехода будут оказывать влияние все факторы, так или иначе изменяющие характер взаимодействия полиэлектролит-ПАВ. Среди них основные: соотношение компонентов, протяженность гидрофобных фрагментов полимера и радикалов ПАВ, ионная сила.

На процесс связывания оказывает влияние природа растворителя [113]. Известно, что смешивающиеся с водой органические вещества ослабляют или полностью подавляют гидрофобные взаимодействия [114], поэтому состав смешанного растворителя оказывает влияние на процесс формирования и устойчивость комплексов. При переходе от водных сред к водно-органическим, в связи с уменьшением полярности среды и усилением эффекта противоионной

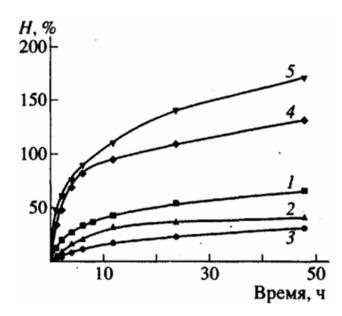
ассоциации снижается электростатическое поле полииона, вследствие чего определяющим фактором связывания ПАВ полимером становятся сольватационные эффекты [115].

Процесс связывания ионов ПАВ с полиэлектролитом также зависит от ионной силы и температуры. На рисунке 1.27 представлены изотермы сорбции тетрадецилпиридиний бромида декстрансульфатом натрия присутствии различных концентраций NaC1 В растворе. Видно, что. введение низкомолекулярных солей приводит к уменьшению констант связывания и сопровождается увеличением кооперативности процесса. Смещение изотерм сорбции в сторону более высоких концентраций ПАВ с ростом ионной силы раствора свидетельствует значительном вкладе электростатических взаимодействий ионов ПАВ и ионизованных групп полимера в процесс комплексообразования.

Значительное влияние на процесс образования комплексов оказывает химическая природа полиэлектролита. Так, тип ионогенной группы, плотность и характер расположения зарядов на цепи, гибкость цепи, гидрофобные свойства макромолекулы существенно отражаются на процессе комплексообразования.


Рисунок 1.27 — Изотермы сорбции тетрадецилтриметиламмоний бромида декстрансульфатом натрия в присутствии различных количеств NaCl

В работе [116] отмечается принципиальное влияние линейной плотности заряда на полиионе на взаимодействие полиэлектролитов с ПАВ. Увеличение линейной плотности заряда приводит к усилению взаимодействия с ростом плотности ионогенных групп и, соответственно, к уменьшению ККА. Однако, следует отметить, что полистиролсульфонат связывается с ПАВ сильнее, чем декстрансульфат, а декстрансульфат в свою очередь сильнее, чем полиакрилат, хотя имеют при этом практически одинаковую линейную плотность заряда на полиионе. Очевидно, что имеются и другие факторы, также оказывающие принципиальное влияние на силу связывание полиэлектролита с ПАВ. Такими факторами могут являться, в частности, гидрофобность и гибкость полимерной цепи.


1.6 Применение полиэлектролитых коллоидных комплексов

Независимо от системы будь то ПАМ, смесь ПАВ и мономера, или ПЭ и ПАВ, но в зависимости от концентрации компонентов в системе могут образовываться не- или растворимые ПЭКК.

Так для всех систем характерно не сохранение структурымицелл, а преобразования их в ламинарную гексагональную структуру, рисунок 1.28(мицеллярная фаза остается). За счет этого ПЭКК способен поглощать пары различных растворителей (рисунок 1.29) или органические вещества из раствора в которых ПЭКК не растворяется [117-120]

Рисунок 1.28— Схема образования ламинарной гексагональной структуры при смешении ПЭ с ПАВ

Рисунок 1.29 – Кинетические кривые сорбции ПЭКК насыщенных паров воды (1), толуола (2), диоксана (3), четырёххлористого углерода (4), хлороформа (5)

Поэтому ПЭКК могут найти применение как селективные сорбенты для поглощения различных растворителей, как из воздуха, так и из растворов [121] или ионов металлов [122]. Еще одним вариантом применения ПЭКК является его использование в качестве высокоэффективных флокулянтов для очистки воды от органических веществ [123-127]. Кроме этого ПЭКК находят свое применение как структурообразователи и стабилизаторы коллоидных дисперсий [128, 129]. Кроме этого поликомплексы возможно использовать как макромолекулярные катализаторы [130], физиологически-активные вещества [131-133].

Таким образом, анализ литературных данных показал, что водорастворимые полимеры являются особым классом высокомолекулярных соединений с широким потенциалом практического применения. Актуальной задачей современной полимеров разработка способов химии является полимеризации, позволяющих контролировать молекулярно-массовые характеристики получаемых полимеров. Матричная полимеризация является перспективным способом контролируемого синтеза полиэлектролитов, так как молекулярно-массовые характеристики дочернего полимера определяются соответствующими молекулярно-массовыми характеристиками матрицы.

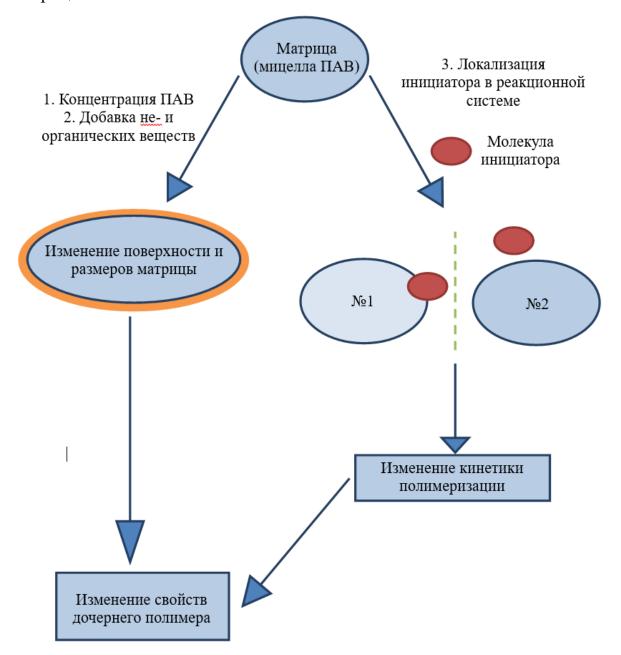
Использование мицелл ПАВ в качестве матрицы в процессе полимеризации ионных мономеров дает возможность простого регулирования размеров матрицы, простого отделения получаемого полимера от матрицы, а получаемые ПЭ будет обладать более низкими Кд, нежели ПЭ полученные свободнорадикальной полимеризацией.

Целью работы является изучение способов регулирования молекулярномассовых характеристик полиэлектролита в матричной полимеризации на мицеллах додецилсульфата натрия (ДДСН) для получения высокомолекулярного политриметил[метакрилоилоксиэтил]аммоний метилсульфата.

- изучение влияния добавок органической (со-ПАВ) и неорганической природы (электролиты компоненты буферного раствора) на мицеллообразование додецилсульфата натрия;
- изучение влияния триметил[метакрилоилоксиэтил]аммоний метилсульфата на образование и структуру ассоциатов, образующихся в результате его взаимодействия с мицеллами противоположно заряженного ПАВ в водных растворах и в бура-фосфатном буферном растворе;
- выявление закономерностей матричной радикальной полимеризации триметил[метакрилоилоксиэтил]аммоний метилсульфата в разбавленных мицеллярных растворах додецилсульфата натрия в водных растворах, а также в бура-фосфатном буферном растворе и определение молекулярно-массовых характеристик синтезированных полиэлектролитов;
 - оценка сорбционной способности синтезированных комплексов;
- оценка флокулирующей способности синтезированных полиэлектролитов.

2 МАТРИЧНАЯ ПОЛИМЕРИЗАЦИЯ ТРИМЕТИЛ[МЕТАКРИЛОИЛОКСИЭТИЛ]АММОНИЙ МЕТИЛСУЛЬФАТА И СПОСОБЫ РЕГУЛИРОВАНИЯ МОЛЕКУЛЯРНОМАССОВЫХ ХАРАКТЕРИСТИК ПОЛУЧАЕМОГО ПОЛИЭЛЕКТРОЛИТА

(обсуждение результатов)


Как следует из литературного обзора, перспективным способом синтеза ПЭ является матричная полимеризация ионогенных мономеров в мицеллярных растворах противоположно заряженных ПАВ. При этом общим свойством и признаком матричной полимеризации является образование устойчивых кооперативных межмолекулярных нековалентных связей между матрицей и дочерней цепью.

В работах [50, 51] была показано, что в зависимости от соотношения мономер – ПАВ возможно формирование как растворимых, так и нерастворимых продуктов полимеризации. Полиэлектролиты, полученные таким способом полимеризации и выделенные из продукта полимеризации, являются высокомолекулярными и, поболее узкодисперсными, чем видимому, полиэлектролиты, получаемые свободнорадикальной полимеризацией в водных растворах. Получение наиболее узкодисперсных полиэлектролитов возможно В условиях формирования Однако нерастворимых продуктов полимеризации. молекулярная масса синтезированных ПЭ не превышала $1,5*10^6$.

Многообразие направлений практического применения ПЭ не позволяет дать однозначный ответ на вопрос, какими молекулярно-массовыми характеристиками должен обладать тот или иной ПЭ. Так, например, в случае применения ПЭ в медицине, их ММ не должна быть высокой и составляет обычно величину порядка 10^3 . Использование ПЭ в качестве стабилизаторов дисперсных систем требует более высокой ММ (10^4 - 10^5), а использование ПЭ в качестве флокулянтов – еще более высоких значений ММ (10^5 – 10^6).

С целью дальнейшего применения получаемого ПЭ, в процессах флокуляции представляется перспективным увеличить молекулярную массу.

Поэтому <u>основная задача</u> состоит в поиске способов увеличения ММ политриметил[метакрилоилоксиэтил]аммоний метилсульфата. Основная идея, которая показана на рисунке 2.1, базируется на том, что в матричной полимеризации молекулярная масса дочернего полимера зависит от молекулярной массы матрицы.

Рисунок 2.1 – Способы контролирования молекулярно-массовых характеристик полимера в процесса матричной полимеризации на мицеллах ПАВ

В случае мицеллярной матрицы, ее молекулярная масса определяется числами агрегации ионов ПАВ в мицеллах. Кроме этого, для мицелл ПАВ характерно изменение формы мицелл и их размера с увеличением чисел

агрегации. С одной стороны, увеличение чисел агрегации ионов ПАВ в мицеллах, т.е. увеличение мицеллярной массы мицеллы должно способствовать получению полимера с большей молекулярной массой. С другой стороны, большие мицеллы обычно более полидисперсны, привести что может увеличению полидисперсности получаемого полимера. Кроме этого, изменение формы мицелл сопровождается изменением критического параметра упаковки ионов ПАВ в мицеллах, что, в свою очередь, может отразиться на количестве сорбированного мономера на поверхности мицелл. В результате молекулярная масса полимера может уменьшиться, несмотря на увеличение мицеллярной массы мицелл. Поэтому представляется интересным и перспективным изучение влияния добавок различной природы на размер и форму мицелл. Целенаправленно увеличивая или уменьшая размер мицелл, можно регулировать молекулярную массу, получаемых полиэлектролитов.

Вторым фактором, влияющим на свойства, получаемого полимера, является механизм матричной полимеризации (рисунки 1.5, 1.6).

Исходя из современных представлений о строении мицеллы, можно полагать, что в случае полимеризации на мицеллах, особенно в условиях эквимольного соотношения мономер/ПАВ, подавляющее количество мономера локализуется на поверхности мицелл ПАВ в результате их электростатического взаимодействия. В результате полимеризация проходит по механизму zip, что подтверждается полученными ранее результатами [134]. В тоже время, особенности химических свойств используемого инициатора, о которых будет подробно изложено ниже, могут приводить к его различной локализации в реакционной отразиться матричной среде, ЧТО может на механизме полимеризации и, как следствие, на свойствах получаемых полимеров.

2.1 Взаимодействие 2,2'- азобис(2-метилпропионамидин)дигидрохлорида с мицеллами ДДСН

Используемый в работе инициатор представляет собой амидиновую соль. Амидины принадлежат к самым сильным органическим основаниям (рК_{а(ВН+)} 12,5), что объясняется крайне благоприятными условиями делокализации положительного заряда в ионе амидиния [135].

$$R-C$$
 $+$ H^{\oplus} \longrightarrow $R-C$ $\stackrel{NH_2}{\circledcirc}$ ион амидиния NH_2

Амидины в кислой среде стабильны, а в нейтральной и щелочной среде гидролизуются до амидов и далее до карбоновых кислот.

$$R-C \stackrel{NH}{\longrightarrow} + H_2O \stackrel{\longrightarrow}{\longrightarrow} R-C \stackrel{NH_2}{\bigcirc} OH^{\ominus} \stackrel{\longrightarrow}{\longrightarrow} R-C \stackrel{O}{\longrightarrow} + NH_3$$

Гидролиз инициатора протекает ступенчато. Так, при рH = 8 k_1/k_2 =10, а при рH =11 k_1/k_2 составляет уже 2,1 [136].

Таким образом, в кислой среде инициатор представляет собой двухзарядный ион, в нейтральной инициатор будет находиться преимущественно в виде однозарядного иона, а в щелочной среде представляет собой незаряженную молекулу.

Исходя из этого, было сделано предположение, что в зависимости от значения рН реакционной среды инициатор может взаимодействовать с мицеллами ДДСН по-разному. Очевидно, что в кислой среде следует ожидать наиболее сильного электростатического взаимодействия инициатора с мицеллой, так как один ион инициатора будет взаимодействовать с двумя ионами ДДСН, входящими в мицеллу, как это показано на рисунке 2.2. В нейтральной среде молекула инициатора будет также связана с мицеллами ПАВ, а в щелочной следует ожидать

отсутствия электростатического взаимодействия, и инициатор будет находиться в объеме раствора. Предполагаемая локализация инициатора на мицелле представлена на рисунке 2.3.

$$pH = 4$$

$$H_{3}C$$

$$O \xrightarrow{H_{2}N} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{NH_{2}} \xrightarrow{O}$$

$$pH = 7$$

$$pH = 7$$

$$O \xrightarrow{H_{2}N} \xrightarrow{CH_{3}} \xrightarrow{N=N} \xrightarrow{H_{3}C} \xrightarrow{O}$$

$$O \xrightarrow{H_{2}N} \xrightarrow{CH_{3}} \xrightarrow{N=N} \xrightarrow{CH_{3}} \xrightarrow{NH_{2}} \xrightarrow{NH_{2}}$$

$$pH = 9$$

$$H_{2}N \xrightarrow{CH_{3}} \xrightarrow{H_{3}C} \xrightarrow{O}$$

$$O \xrightarrow{H_{2}N} \xrightarrow{CH_{3}} \xrightarrow{N=N} \xrightarrow{H_{3}C} \xrightarrow{O}$$

$$O \xrightarrow{H_{2}N} \xrightarrow{CH_{3}} \xrightarrow{N=N} \xrightarrow{H_{3}C} \xrightarrow{O}$$

$$O \xrightarrow{H_{2}N} \xrightarrow{CH_{3}} \xrightarrow{N=N} \xrightarrow{N=N} \xrightarrow{CH_{3}} \xrightarrow{NH_{2}}$$

Рисунок 2.2 — Взаимодействие инициатора с ДДСН в зависимости от значения рН реакционной среды

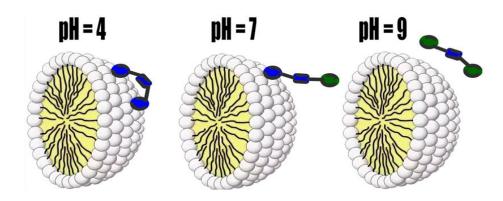
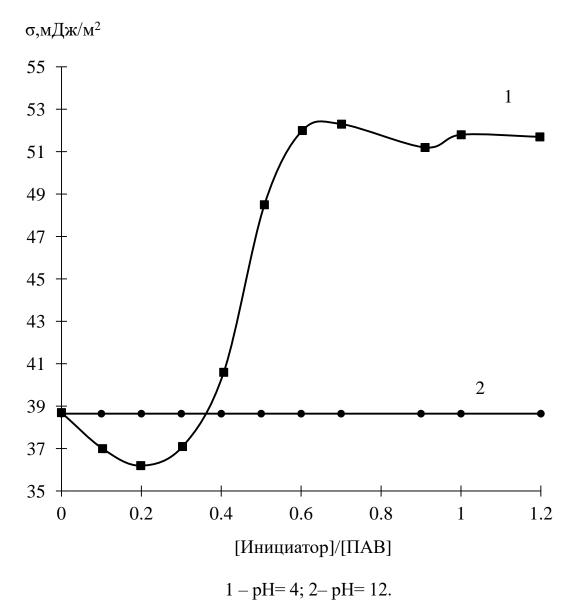



Рисунок 2.3 – Локализация инициатора на мицелле ДДСН в зависимости от рН

Доказательством этого предположения является то, что в кислой среде в растворах ДДСН добавление инициатора приводит к формированию осадка стехиометричного состава. На рисунке 2.4 показана зависимость поверхностного натяжения раствора ДДСН от мольного соотношения [Инициатор]/[ДДСН]. Видно, что в кислой среде (зависимость 1) поверхностное натяжение раствора резко возрастает, проходя через незначительный минимум в области малых мольных отношений [Инициатор]/[ДДСН]. При мольных соотношениях [Инициатор]/[ДДСН] 0,5 – 0,6, зависимость достигает максимального значения

поверхностного натяжения 51 - 52 мДж/м², а дальнейшее увеличение мольного соотношения [Инициатор]/[ДДСН] не приводит к заметным изменениям в значениях поверхностного натяжения.

Рисунок 2.4 — Зависимость поверхностного натяжения раствора ДДСН от мольного соотношения [Инициатор]/[ДДСН], при разных рН среды в воде. [ДДСН] = 10мМ, t = 25°C

В щелочной среде (pH = 12), добавление инициатора к раствору ДДСН не отражается на значениях поверхностного натяжения. Полученные результаты хорошо согласуются с предположением о локализации инициатора в реакционной среде в зависимости от pH среды, изложенными выше. Формирование осадка в результате взаимодействия инициатора с ПАВ в кислой среде приводит к

уменьшению концентрации ПАВ в растворе, в результате поверхностное натяжение раствора возрастает.

Выход зависимости 1 на плато свидетельствует об исчерпании ДДСН в растворе. Достигаемые при этом значения поверхностного натяжения раствора оказываются ниже значения поверхностного натяжения воды (72,5 мДж/м²). Повидимому, в исследуемом ДДСН содержатся примеси ДДС, который не взаимодействует с инициатором и остается в растворе.

Особенно необходимо отметить, что выход зависимости 1 на плато при pH = 4 при соотношении [Инициатор]/[ДДСН] = 0,5-0,6, на наш взгляд подтверждает предположение, что инициатор реагирует с двумя молекулами ДДСН.

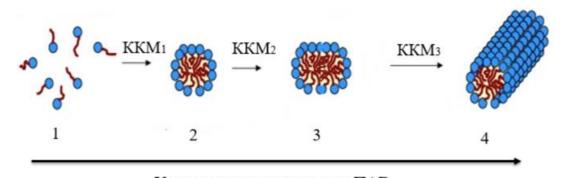
Отсутствие pН зависимости раствора ОТ мольного соотношения [Инициатор]/[ДДСН] щелочной среде, наш ВЗГЛЯД подтверждает предположение, что инициатор полностью гидролизуется и способен не электростатически взаимодействовать с ПАВ.

Дополнительным доказательством взаимодействия инициатора с ДДСН в кислой среде являются результаты энергодисперсионного рентгенофлуоресцентного анализа (таблица 2.1).

Таблица 2.1 – Содержания серы в фильтратах Инициатор-ДДСН в зависимости от соотношения инициатор/ПАВ

Растворы Д	ІДСН в воде	Раствор ДДСН 8 мМ		
Концентрация Кажущаяся		Мольное	Кажущаяся	
раствора, мМ	интенсивность	соотношение	интенсивность	
	серы, %	Инициатор/ДДСН	серы, %	
1	0,013	0,00	0,069	
2	0,020	0,25	0,033	
4	0,035	0,50	0,000	
6	0,051	0,75	0,000	
8	0,069	1,00	0,000	
10	0,087	2,50	0,000	

В таблице представлены кажущиеся значения интенсивности сигнала серы в растворах ДДСН различной концентрации. Здесь необходимо отметить, что


представленные значения нельзя соотносить с массовым содержанием серы в ДДСН, так как в условиях проведения эксперимента невозможно получить точные значения массового содержания серы. Представленные значения были построения калибровочной зависимости. Добавление использованы ДЛЯ инициатора к раствору ДДСН в воде с фиксированной концентрацией 8 мМ приводит к заметному уменьшению сигнала серы. Причем, полученные результаты хорошо согласуются с предыдущими данными. При мольном соотношении инициатор/ДДСН 0,5 сигнал серы уменьшается на 50 % и остаточный сигнал соответствует концентрации ДДСН 4 мМ, т.е. в два раза меньше исходной концентрации. Для ясности поясним детали проведения Поскольку ДДСН взаимодействует эксперимента. инициатором формированием осадка, то в этой части эксперимента растворы фильтровали перед измерением. Дальнейшее увеличение мольного соотношения приводит к тому, что весь ДДСН выпадает в осадок, а в отфильтрованных растворах наличие серы не детектируется.

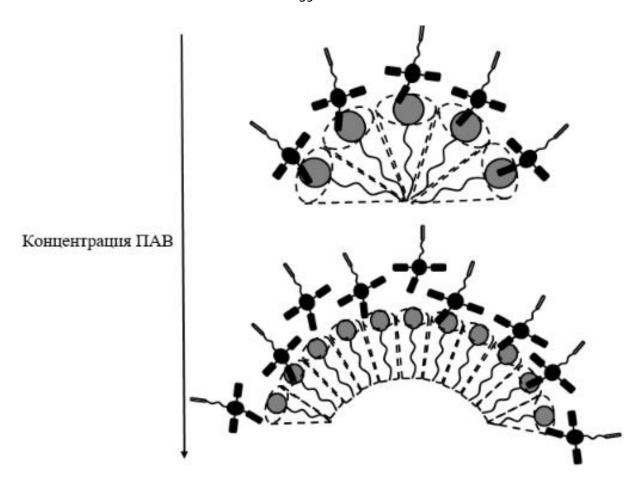
2.2 Влияние мономера, додецилового спирта и температуры на мицеллообразование додецилсульфата натрия в воде

Известно, что формирующиеся в растворе мицеллы при достижении первой критической концентрации мицеллообразования (ККМ₁) имеют сферическую форму. Далее при увеличении концентрации ПАВ мицеллы начинают расти, постепенно изменяя свою форму из сферической к цилиндрической. Этот переход происходит в достаточно широком интервале концентраций. Вначале, мицеллы становятся сфероидами (эллипсоидами) (ККМ₂) и, далее, увеличиваясь в длину, превращаются в цилиндры (ККМ₃), после достижения определённых размеров мицеллы начинают переплетаться, формируя сетку зацеплений [72]. Скорее всего количество мицелл растет скачкообразно, увеличиваясь от ККМ₁ до ККМ₂, а после ККМ₂ уменьшаясь до минимума и снова увеличиваясь до ККМ₃. После ККМ₃ количество мицелл растет, но из-за их формы (цилиндра) они могут

бесконечно расти в длину, что приводит к равновесию между количеством и размером мицелл, так же эти мицеллы обладают наибольшей полидисперсностью.

На значения всех ККМ оказывает влияние множество факторов, в числе которых температура, наличие фоновых электролитов и пр. На рисунке 2.5 схематически представлен процесс мицеллообразования для ДДСН в воде.

Увеличения концентрации ПАВ


Рисунок 2.5 – Изменение формы мицелл ДДСН от концентрации ДДСН

Форму мицелл, можно описать критическим параметром упаковки [52], который для сферических мицелл составляет 1/3, а для цилиндрических — 1/2, промежуточные значения которого соответствуют изменению размеров и формы мицелл в интервале концентраций от ККМ₁ до ККМ₃:

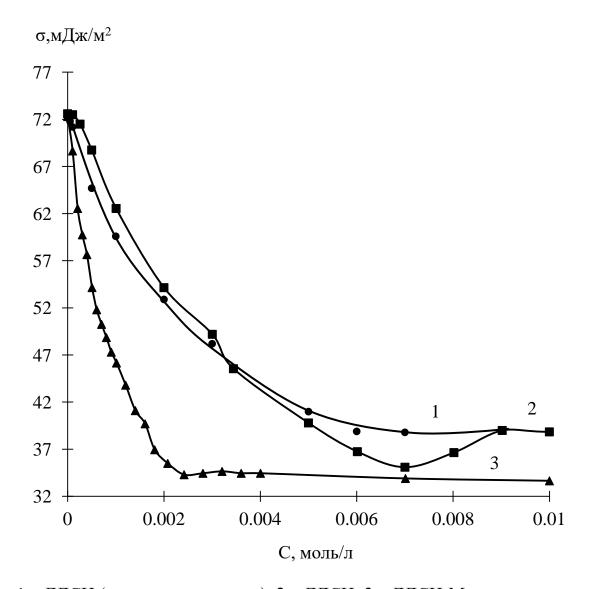
$$1/3 \le v/(l_{max} \cdot a) \le 1/2$$

где v — объем углеводородной цепи, l_{max} — длина углеводородной цепи, a — площадь поперечного сечения одной молекулы ПАВ.

Граничные значения критического параметра упаковки онжом проиллюстрировать следующей схемой (рисунок 2.6). Анализируя представленную схему, становится понятным, что критический параметр упаковки 1/3, соответствует конусу и формирует сферическую форму мицелл. Сферическая мицелла имеет наибольшую площадь поперечного сечения, приходящуюся на один ион ПАВ. Увеличение критического параметра упаковки до 1/2 сопровождается уменьшением площади поперечного сечения.

Рисунок 2.6 — Схематическое изображение сорбции мономера на поверхности сферических и асферических мицелл

Ранее методом ЭПР-спектроскопии спинового зонда было изучено взаимодействие мономера с мицеллами [137] и показано, что мономер электростатически связываются с поверхностью как сферических, так и цилиндрических мицелл, вызывая рост плотности упаковки ионов ПАВ и, вытесняя в раствор противоионы ПАВ.


Переходя к рассуждению о взаимодействии мономера с мицеллами (адсорбции мономера на мицеллах) логично предположить, что количество адсорбированного мономера может зависеть от формы мицеллы. На сферических мицеллах, когда площадь поперечного сечения максимальна, создаются наиболее благоприятные условия для взаимодействия мономера с мицеллами. Поэтому количество адсорбированного мономера может быть максимальным от теоретически возможного, так как пространственные ограничения отсутствуют. Количество адсорбированного мономера на мицеллах асферической формы может оказаться меньше. Наличие четвертичного атома азота с тремя метильными

заместителями и, как следствие, большой объем иона мономера, может помешать эффективному взаимодействию мономер-ПАВ из-за стерических ограничений.

Исходя из выше сказанного, логично предположить, что полимеризация на сферических мицеллах должна приводить к получению полиэлектролитов с наиболее высокой молекулярной массой. Однако, небольшие числа агрегации ионов ПАВ в сферических мицеллах и, как следствие, невысокая общая концентрация мономера (в условиях эквимольного соотношения мономер/ПАВ) могут оказаться препятствующими факторами ДЛЯ получения высокомолекулярных полиэлектролитов. Можно полагать, что сфероидные будут оптимальными. Поэтому, представляется целесообразным провести МП на сфероидных мицеллах.

Для выявления оптимальных концентраций для МП необходимо определить границы существования различных форм мицелл (критические концентрации мицеллообразования), которые определяли, используя комплекс физико-химических методов исследования: тензометрия, кондуктометрия, солюбилизация маслорастворимого красителя, вискозиметрия.

Одним из наиболее простых и быстрых методов для анализа растворов ПАВ является измерение поверхностного натяжения [55]. Как видно из данных, представленных на рисунке 2.7, изотерма поверхностного натяжения растворов ДДСН (зависимость 2) характеризуется наличием минимума при концентрации ДДСН 0,007 моль/л. Зависимости такого вида характерны для ПАВ, которые содержат примеси, обладающие более высокой поверхностной активностью (додециловый спирт в случае ДДСН). Для сравнения, на рисунке представлены справочные значения (зависимость 1). ККМ₁ исследуемого ДДСН составляет 0,007 моль/л, тогда как по справочным данным ККМ₁ ДДСН составляет 0,008 моль/л [77]. Введение эквимольного количества мономера (зависимость 3) приводит к дополнительному уменьшению ККМ₁ ДДСН. ККМ₁ исследуемого ПАВ в присутствии эквимольного количества мономера уменьшается в 3 раза и составляет 2,4 ммоль/л.

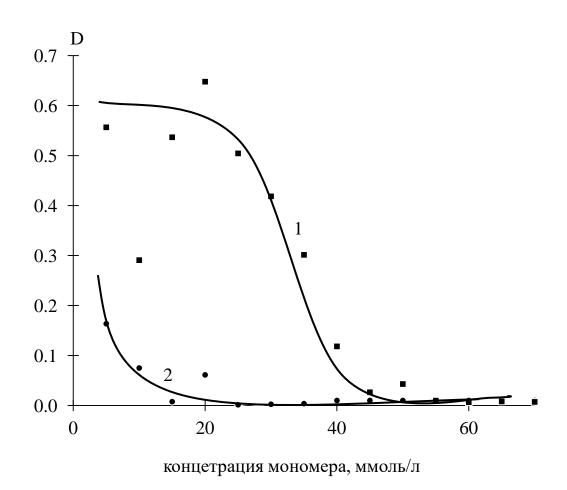
1 – ДДСН (справочные данные); 2 – ДДСН; 3 – ДДСН-Мономер. **Рисунок 2.7** – Зависимость поверхностного натяжения растворов от концентрации ДДСН

Влияние не- и органических солей на мицеллобразование подробно изучено. В зависимости от природы добавки ККМ может, как уменьшаться, так и увеличиваться [52]. Так, например, в присутствии электролитов с различными катионами снижение ККМ $_1$ ДДСН происходит в ряду Na $^+$ < NH $_4^+$ < K $^+$ < Mg $_2^{2+}$, [57], или с органическими, такими как салицилат натрия, который оказывает аналогичное влияние на мицеллообразование ДДСН, понижая ККМ $_1$, вплоть до (0.88-0.98) ммоль/л [90]

Поскольку используемый мономер представляет собой органическую соль, состоящую из четвертичного атома азота и аниона метилсульфата, то столь

заметное уменьшение КК M_1 (в 4 раза), по-видимому, связано с сорбцией катионов мономера на поверхности мицелл.

Для подтверждения данных, полученных с помощью тензометрии, ККМ₁ ДДСН в присутствии мономера была определена кондуктометрическим методом и методом солюбилизации красителя. Для определения последующих ККМ были кондуктометрии, солюбилизации использованы методы красителя вискозиметрии. Полученные результаты представлены в таблице 2.2. Для сравнения в таблице также приведены литературные данные о ККМ чистого ДДСН. Как следует из данных рисунка 2,8 и данных, представленных в таблице, введение мономера вызывает заметное уменьшение ККМ₁, последующих ККМ. А повышение температуры с 25 до 60 °C приводит закономерно к небольшому увеличению ККМ. Здесь необходимо отметить, что данные при температуре 60 °C представлены потому, что полимеризация осуществлялась при этой температуре. Данные, приведенные в таблице, показывают, что при эквимольном соотношении М/ДДСН сфероидные мицеллы существуют в диапазоне концентраций от 12 до 108 мМ при 60°C.


Таблица 2.2 — Критические концентрации мицеллообразования ДДСН в воде и в присутствии мономера

μ.	меутетыни мономера					
	Сматама	Температура,	KKM ₁ ,	KKM ₂ ,	KKM ₃ ,	
Система	°C	мМ	мМ	мМ		
	ДДСН	25	8,3°	70°	150°	
	ДДСН-М	25	2,4ª	6,4-11 ⁶	-	
	ДДСН-М	60	3,2-3,6 ⁶	12 ⁶	107-108 ^r	

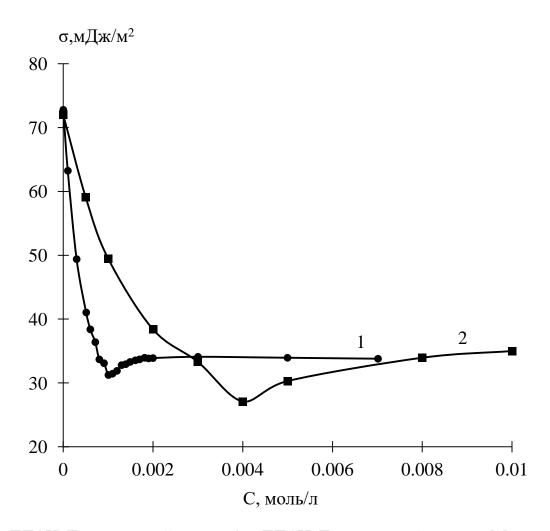
Примечание: а-тензометрия, б-кондуктометрия, в-солюбилизация, г-вискозиметрия, с-литературные данные

Отмеченное выше взаимодействие инициатора с ДДСН (формирование осадка) ограничивает возможность проведения полимеризации в этих концентрационных диапазонах. Как было отмечено ранее, ДДСН взаимодействует с инициатором с образованием осадка.

На рисунке 2.8 представлены зависимости оптической плотности растворов ДДСН, содержащих эквимольное количество мономера и инициатор, концентрация которого в растворе составляла 0,5 мМ.

1 –ДДСН-Мономер, 2 – ДДСН-Додециловый спирт-Мономер **Рисунок 2.8** – Зависимость оптической плотности растворов М/ДДСН при их эквимольном соотношении от концентрации мономера

Как следует из зависимости 1 тенденция к осветлению раствора (уменьшение оптической плотности) наблюдается при концентрации ДДСН 28 мМ и выше. При концентрации ДДСН 55 мМ растворы становятся оптически прозрачными. Следовательно, диапазон возможных концентраций для проведения полимеризации на сфероидных мицеллах существенно сужается.


Кроме этого, необходимо отметить тот факт, что введение мономера в растворы ДДСН оказывает заметное влияние на взаимодействие инициатора с ДДСН. В растворах ДДСН без мономера образование осадка наблюдается вплоть

до концентрации 12 мМ. Более концентрированные растворы оптически прозрачны.

Поскольку мономер и инициатор заряжены положительно и в основе их взаимодействия с мицеллами лежит электростатическое взаимодействие, то можно предположить, что оба эти компонента конкурируют за место на мицелле. Доказательством этого является то, что количество осадка зависит от порядка добавления инициатора. Если инициатор добавить до мономера, то количество осадка будет меньше, чем если к раствору ДДСН добавить сначала мономер, а потом инициатор.

Решение данной проблемы может заключаться в использовании со-ПАВ. С нашей точки зрения наиболее подходящим со-ПАВ является додециловый спирт, так как он имеет одинаковый углеводородный хвост (С₁₂) и является исходным соединением для получения ДДСН. Для изучения влияния додецилового спирта был использован ДДСН, содержащий некоторое количество спирта. Из зависимости 2 (рисунок 2.8) видно, что оптическая плотность в растворах содержащих додециловый спирт существенно меньше. Более того, уже при концентрации ДДСН 15 мМ растворы становятся оптически прозрачными.

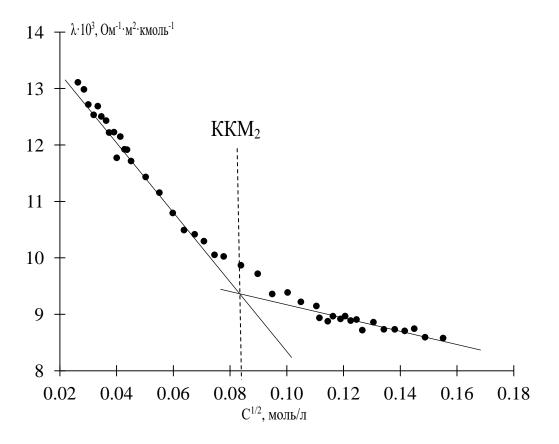
Для объяснения рассмотрим, ДДС ЭТОГО явления как влияет на мицеллообразование ДДСН. На рисунке 2.9 приведены изотермы поверхностного натяжения растворов ДДСН содержащих додециловый спирт. Как видно из рисунка 2,9, изотерма поверхностного натяжения растворов ДДСН (зависимость 1) характеризуются наличием минимума. ККМ1 исследуемого ДДСН составляет 4 ммоль/л. Введение эквимольного количества мономера (зависимость 2) приводит к дополнительному уменьшению ККМ₁ ДДСН до 1 мМ. Для подтверждения данных, полученных помошью тензометрии, KKM_1 была определена кондуктометрическим методом и методом солюбилизации красителя, данные приведены в таблице 2.3.

1-ДДСН-Додециловый спирт; 2-ДДСН-Додециловый спирт - Мономер **Рисунок 2.9** – Зависимость поверхностного натяжения растворов от концентрации

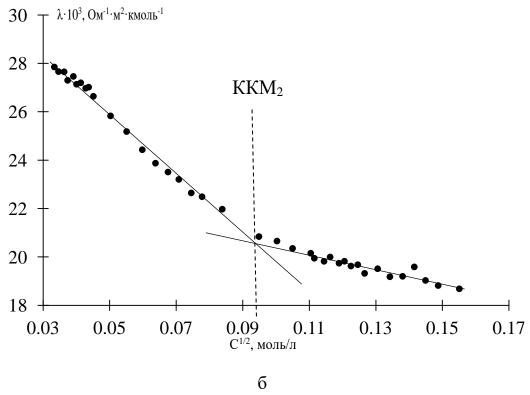
Таблица 2.3 – Критические концентрации мицеллообразования ДДСН в воде в присутствии ДДС и мономера

Система	Температура,	KKM_1 ,	KKM ₂ ,	KKM ₃ ,
CHCICWA	°C	мМ	мМ	мМ
ДДСН-				
Додециловый	25	$4,4^{6}$	55 ⁶	110 ⁶
спирт				
ДДСН-		1 ^a	6006 ⁶	
Додециловый	25	0,61-0,94 ⁶ 1,5 ⁸	6,9-9,6 ⁶ 9-12 ⁸	44,4 ^r
спирт -М		$1,5^{\text{B}}$	9-12	
ДДСН-				
Додециловый	60	0,64-1 ⁶	8,7-14,4 ⁶	93 ^r
спирт -М				

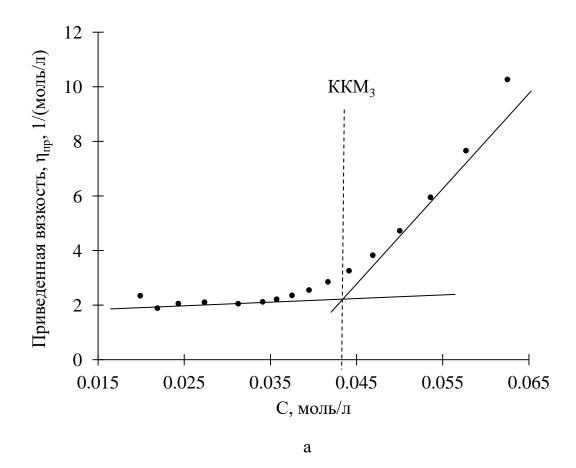
Примечание: а-тензометрия, б-кондуктометрия, в-солюбилизация, г-вискозиметрия, с-литературные данные

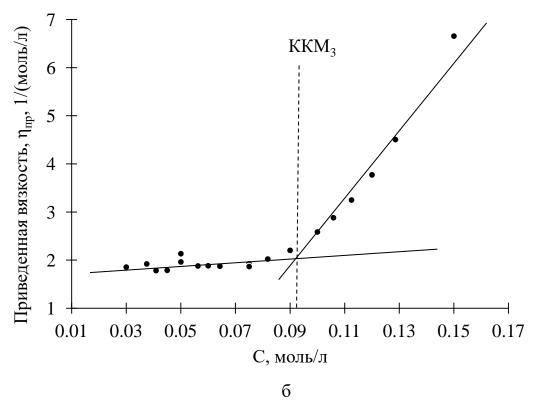

Для определения последующих ККМ были использованы методы кондуктометрии, солюбилизации красителя и вискозиметрии (рисунки 2.10 и 2.11), а числовые значения определенных ККМ также представлены в таблице 2.3.

На рисунке 2.10 представлена концентрационная зависимость эквивалентной электропроводности раствора ДДСН-ДДС-Мономер при двух температурах 25° C (а) и 60° C (б).


На рисунке 2.11 представлена концентрационная зависимость приведенной вязкости ($\eta_{пp}$) раствора ДДСН-Додециловый спирт-Мономер при двух температурах 25°C (а) и 60°C (б) соответственно. Начало резкого роста приведенной вязкости можно принять как ККМ₃, что соответствует образованию цилиндрических мицелл и сетки зацеплений [138].

Считается что ККМ мало зависит от температуры, однако, это не так, согласно справочным данным [77] ККМ₁ ДДС увеличивается с 8,47 до 10,16 ммоль/л при увеличении температуры с 20 до 60°С, в абсолютных цифрах это не много, однако в относительных значениях она увеличивается на 20%. Для системы (ДДСН-Додециловый спирт-Мономер) наблюдается аналогичная тенденция. Если ККМ₁ увеличивается незначительно или вовсе не изменяется, то для ККМ₂ и ККМ₃ наблюдается увеличение на 25% и 48%, соответственно. Данную тенденцию к увеличению значений ККМ необходимо учитывать для объяснения полученных результатов матричной полимеризации.


Полученные результаты показывают, что ДДС оказывает значительное влияние на мицеллообразование в растворах ДДСН, но не препятствует взаимодействию ДДСН и мономера. Известно, что нерастворимые в воде спирты с 7-8 более) длинными цепями (число атомов углерода полностью солюбилизируются мицеллами, образуя, благодаря дифильной природе, смешанные мицеллы, и понижая вследствие этого ККМ₁.



a

Рисунок 2.10 – Концентрационная зависимость эквивалентной электропроводности раствора ДДСН-Додециловый спирт-Мономер при температурах 25°C (а) и 60°C (б)

Рисунок 2.11 — Концентрационная зависимость приведенной вязкости от концентрации ДДСН- Додециловый спирт-Мономер в растворе при температурах 25° C (а) и 60° C (б)

Такое действие длинноцепочечных спиртов на мицеллы ПАВ объясняется тем, что при солюбилизации в мицеллах молекулы спирта, располагаясь между молекулами ПАВ в полярной части, уменьшают плотность заряда на поверхности мицелл и электростатическое отталкивание полярных групп, а также вызывают уплотнение структуры мицелл, из-за вытеснения воды из приповерхностного слоя [72]. Введение мономера в растворы ДДСН, содержащие ДДС вызывает дополнительное резкое уменьшение всех ККМ.

По-видимому, включение в состав мицелл ДДСН молекул додецилового спирта оказывает влияние на ее приповерхностный слой, стабильность, эффективный заряд, создавая тем самым благоприятные условия для локализации инициатора на ее поверхности, без выпадения осадка.

Таким образом, проведенные исследования показали, что мономер взаимодействует с мицеллами ДДСН, что сопровождается уменьшением ККМ ПАВ. Повышение температуры приводит к незначительному увеличению ККМ и при 60 °С интервал существования сфероидных мицелл составляет 12 – 108 мМ. Додециловый спирт вызывает дополнительное уменьшение ККМ исследуемого ПАВ и его ассоциатов с мономером, сужая интервал существования сфероидных мицелл до 14,4 – 93 мМ.

2.3 Молекулярно-массовые характеристики полиэлектролитов, полученных полимеризацией мономера на сфероидных мицеллах

Наиболее простым методом оценки молекулярных масс синтезированных полимеров является метод вискозиметрии. Действительно, как следует из уравнения Марка-Куна-Хаувинка характеристическая вязкость раствора полимера ($[\eta]$) пропорциональна средневязкостной молекулярной массе полимера (M_{η}):

$$[\eta] = K * M_{\eta}^{a}$$

Для определения численного значения M_{η} необходимо знать константы К и а, входящие в уравнение Марка-Куна-Хаувинка, которые не всегда известны. Тем не менее, значения [η] позволяют делать некоторые предположения о величине M_{η} .

Однако здесь необходимо отметить, что $[\eta]$ в значительной степени определяется размерами макромолекулярного клубка в растворе, а, следовательно, метод вискозиметрии является относительным.

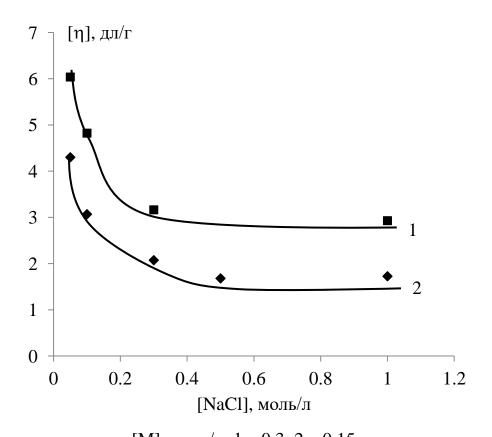
В таблице 2.4 представлены значения характеристической вязкости и констант Хаггинса для образцов полимеров, полученных полимеризацией как на мицеллах ДДСН, так и в отсутствие ПАВ.

Таблица 2.4 — Влияние условий полимеризации на характеристическую вязкость и константы Хаггинса

[М]/[ДДСН]	[ДДСН],	[M],	[η]*, дл/г	Кх
	мМ	мМ		
	Растворитель: 0,5 моль/л нитрат натрия			
_	0**	30	0,39	0,29
		50	0,49	0,36
		70	0,77	0,27
	Растворитель: 0,5 моль/л нитрат натрия			
	15	15	1,65	0,42
1	30	30	2,08	0,45
	50	50	1,97	0,50
	70	70	2,05	0,27
	Растворитель: 1 моль/л нитрат натрия			
1***	100	100	1,37	-
	200	200	1,53	-
	300	300	1,66	-

Примечание:

Анализируя полученные данные, представленные в таблице 2.4, необходимо отметить, что характеристическая вязкость ПЭ, полученных в отсутствие ПАВ


^{*}Среднее значение из трех измерений;

^{**}Получить ПЭ при концентрации мономера 15 мМ в отсутствие ПАВ в работе не удалось;

^{***}Данные [50] приведены для сравнения.

закономерно возрастает с увеличением концентрации мономера. ПЭ, полученные полимеризацией на мицеллах ДДСН, имеют заметно более высокие значения характеристической вязкости по сравнению с полимерами, полученными без ПАВ. Для концентрации мономера 30 и 50 мМ ПЭ, полученные на мицеллах ДДСН характеристическая вязкость выше в 5 и в 4 раза, соответственно. В тоже время при увеличении концентрации мономера до 70 мМ эта разница снижается до 2,7. Для сравнения, в таблице также представлены данные работы [50], в которой ПЭ были получены на мицеллах ДДСН в условиях эквимольного соотношения мономер/ДДСН, но концентрации ДДСН варьировались в интервале 100 – 300 мМ. Видно, что, несмотря на более высокую концентрацию мономера ПЭ существенно характеристическая вязкость меньше. Сопоставимыми оказываются значения характеристической вязкости ПЭ, полученных при концентрациях 15 мМ и 300 мМ!

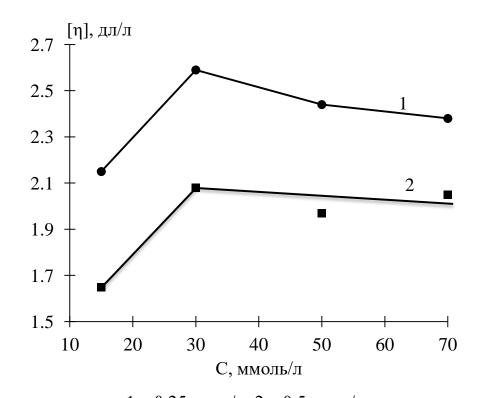
Необходимо отметить, что, на наш взгляд, наблюдаемая разница не может быть связана с концентрацией фонового электролита, так как данные рисунка 2.12 показывают, что в области умеренных концентраций низкомолекулярной соли с увеличением концентрации фонового электролита с 0,05 моль/л до 0,25 моль/л характеристическая вязкость ПЭ закономерно уменьшается и при концентрации моль/л хлорида натрия 0.3И выше выходит на плато. Уменьшение характеристической вязкости растворов на этом участке связано с уменьшением размеров макромолекулярных клубков. Увеличение ионной силы раствора вызывает дополнительную конденсацию контрионов на макромолекулах, в результате чего их эффективный заряд уменьшается. Как следствие, это приводит к уменьшению отталкиваний между одноименно заряженными группами ПЭ и макромолекул В более компактные клубки. Дальнейшее увеличение концентрации NaCl не оказывает существенного влияния на значение вязкости. Это свидетельствует о том, что добавление к водным растворам исследуемых ПЭ хлорида натрия в количестве 0,5 моль/л оказывается достаточным для подавления эффекта полиэлектролитного набухания.

[М], моль/л: 1-0.3; 2-0.15**Рисунок 2.12** — Зависимость характеристической вязкости ПЭ от концентрации фонового электролита

Более того, совпадение значения характеристической вязкости, определенного по уравнениям Хаггинса и Крэмера (рисунок 3.4) указывает на то, что характеристическая вязкость определена корректно.

Поскольку характеристическая вязкость связана с молекулярной массой прямо пропорционально, то это свидетельствует о более высокой молекулярной массе ПЭ, полученных на сфероидных мицеллах ПАВ.

В рамках обсуждения данных о характеристической вязкости отметим также еще один факт. Для ПЭ, полученных в отсутствие ДДСН или в растворах ДДСН с концентрацией 100-300 мМ, характеристическая вязкость ПЭ возрастает практически линейно с увеличением концентрации мономера. Коэффициенты аппроксимации зависимостей составляют 0,930 и 0,996, соответственно.


Рост значений характеристической вязкости ПЭ, полученных на сфероидных мицеллах ПАВ, очевидно, нелинейный. Если при концентрации ДДСН 15 ммоль/л характеристическая вязкость равна 1,65, то при концентрации ДДСН 30 ммоль/л

характеристическая вязкость возрастает до 2,08. Дальнейшее увеличение концентрации ПАВ не оказывает заметного влияния на значения характеристической вязкости.

Независимость значений характеристической значений вязкости ОТ молекулярной массы (концентрации мономера) необходимо пояснить. Известно, закономерность характерна ДЛЯ случая, что такая когда используемый растворитель является термодинамически плохим. Анализ значений константы Хаггинса показывает, что константа Хаггинса ПЭ, полученных в отсутствие ДДСН, варьируется в интервале 0.27 - 0.36, что указывает на то, что используемый растворитель является термодинамически хорошим. Для ПЭ, полученных при концентрации мономера 15-50 мМ эта величина составляет 0,42-0,5, что соответствует практически θ – растворителю. Увеличение концентрации мономера до 70 мМ приводит к снижению константы Хаггинса до 0,27. Повидимому, молекулярная масса ПЭ, полученных В присутствии ПАВ, действительно, существенно выше молекулярной массы ПЭ, полученных в отсутствие ПАВ. При этом, все же необходимо принимать во внимание, что константы Хаггинса дают косвенную оценку термодинамического качества растворителя.

Для объяснения полученных результатов была измерена характеристическая вязкость ПЭ, синтезированных на сфероидных мицеллах ДДСН, в растворе нитрата натрия ме́ньшей концентрации (рисунок 2.13, зависимость 1). Для сравнения, на этом же рисунке представлена зависимость, построенная по данным таблицы 2.4 (зависимость 2). Из данных, представленных на рисунке 2.13, видно, что значения характеристической вязкости, измеренные в 0,25 моль/л NaNO₃ закономерно выше. Константы Хагтинса уменьшаются, стремясь к значениям характерным для термодинамически хорошего растворителя. Более того, в этих условиях зависимость приобретает экстремальный характер с максимумом характеристической вязкости при концентрации мономера 30 мМ. На первый взгляд, полученные данные кажутся удивительными. Однако, если вернуться к данным таблицы 2.4, в которой приведены данные для сравнения по ПЭ,

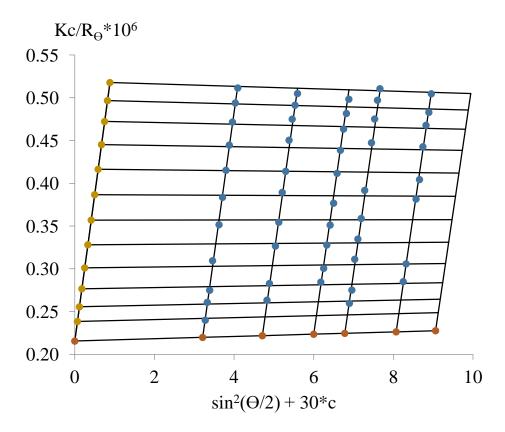
полученным в более концентрированных растворах ДДСН, то это может служить подтверждением нашей идеи о том, что форма мицеллы должна влиять на молекулярную массу получаемых ПЭ. Как следует из данных таблицы 2.3, интервал существования сфероидных мицелл составляет от 15 до 93 мМ.

1-0.25 моль/л; 2-0.5 моль/л. **Рисунок 2.13** — Зависимость характеристической вязкости раствора полиэлектролитов от исходной концентрации мономера, $t=20^{\circ}\mathrm{C}$

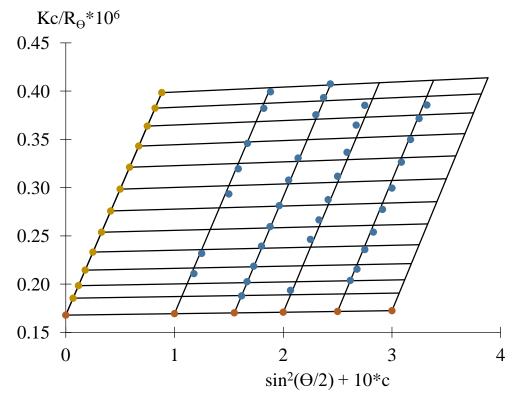
Согласно теории форма мицелл меняется постепенно, т.е. в указанном интервале мицелла трансформируется из сфероидной в цилиндрическую. Возможно, что для исследуемой системы ДДСН-Додециловый спирт-Мономер при концентрации ДДСН 30 ммоль/л достигаются наилучшие условия полимеризации.

подтверждения сделанного предположения молекулярно-массовые характеристики синтезированных ПЭ были детально изучены методами динамического и статического светорассеяния. В таблице 2.5 приведены значения коэффициента асимметрии $(I_{40}/I_{140}),$ напрямую связанного размерами рассеивающих частиц. Сильная асимметрия рассеяния характерна для всех образцов ПЭ, что свидетельствует о больших размерах рассеивающих частиц. Как следует из теории, асимметрия рассеяния прямо связана с размерами частиц: чем больше размеры рассеивающих частиц, тем больше асимметрия. В свою очередь, размер рассеивающих частиц (макромолекул) определяется их молекулярной массой.

Как показывают данные динамического светорассеяния (таблица 2.5) характерной особенностью распределений частиц по размерам, восстановленных из автокорреляционных функций является зависимость положения максимума от угла рассеяния.


Таблица 2.5 – Асимметрия рассеяния I_{40}/I_{140} для ПЭ, полученных полимеризацией

М в мицеллярных растворах ПАВ в различных условиях


[M], мМ	[ДДСН], мМ	[М]/[ДДСН]	I_{40}/I_{140}	R ₅₀	R ₁₃₀	R ₅₀ /R ₁₃₀
15	15		1,83	38	32	1,19
30	30	1	2,10	44	37	1,19
50	50		1,85	43	36	1,19
70	70		1,93	44	38	1,16

Необходимо отметить, что для всех ПЭ, синтезированных в работе распределения имели мономодальный характер. Следовательно, во всех изученных растворах существует только один сорт частиц, а расчет молекулярных масс этих полимеров с помощью диаграмм Зимма является обоснованным. Анализируя данные, представленные в таблице 2.5, необходимо отметить, что разброс в значениях эффективного размера практически не зависит от начальной концентрации мономера и составляет 1,16 – 1,19.

В качестве примера на рисунках 2.14 и 2.15 представлены диаграммы Зимма для образцов ПЭ, полученных при концентрации ДДСН 15 и 70 мМ и соотношении [М]/[ДДСН] = 1, а в таблице 2.6 представлены результаты статического и динамического светорассеяния для всех синтезированных образцов ПЭ.

Рисунок 2.14 — Диаграмма Зимма для образца ПЭ, полученного полимеризацией М в мицеллярном растворе ДДСН. [M] = 15 мМ, [ДДС] = 15 мМ. [NaNO₃] = 0.5 моль/л, 25 °C

Рисунок 2.15 — Диаграмма Зимма для образца ПЭ, полученного полимеризацией М в мицеллярном растворе ДДСН. [M] = 70 мМ, [ДДС] = 70 мМ. [NaNO₃] = 0.5 моль/л, 25 °C

Таблица	2.6 –	Влияние	концентрации	мономера	при	[M]/[ΠAB]	=	1	на
молекуля	эно-масс	совые хара	ктеристики син	тезированні	ых ПЭ) *			

[M], мМ	[ПАВ], мМ	M _w ·10 ⁻⁶	R _g , нм	$A_2 \cdot 10^4$, $cm^3 \cdot моль \cdot \Gamma^{-2}$	R _h ,	$(D_z)_0 \cdot 10^8$, cm^2/c	$R_{\mathrm{g}}/$ R_{h}	α	a	$l_{ m K}^{ m j,n}$
30	30	2,0	85	2,7	35	7,00	2,43	2,09	0,77	24
50	50	3,8	98	1,5	34	7,22	2,88	2,26	0,77	17
70	70	3,8	92	1,1	33	7,36	2,79	1,79	0,75	15

^{* - 0.5}M NaNO₃, 25 °C.

Данные, приведенные в таблице 2.6 показывают, что синтезированные ПЭ имеют высокую MM, которая составляет $(2,0-3,8)\cdot 10^6$. Второй вириальный коэффициент (А2) положителен, что свидетельствует о том, что используемый растворитель все же термодинамически хороший. Тем не менее, данные приведенные в этой таблице заслуживают более детального обсуждения. В таблице 2.6 также представлены значения отношения среднеквадратичного радиуса инерции к гидродинамическому радиусу макромолекул. Оценка этого отношения является одной из возможных характеристик формы макромолекул в растворе. Из теории следует, что отношение $R_{\rm g}/R_{\rm h}$ больше 2 может указывать на то, что макромолекулы имеют в растворе не форму клубка, а форму вытянутого стержня. Используя известное соотношение, связывающее $([\eta])$ характеристической вязкостью раствора онжом оценить значения коэффициента набухания клубков (α):

$$\ln \left[1 + \frac{\sqrt{\pi}}{2} * (\alpha^2 - 1) \right] = \frac{27 * \Phi}{\sqrt{32} * \pi * N_a} * \frac{M * A_2}{[\eta]},$$

где
$$\Phi = 2,1*10^{21}$$
 моль⁻¹

которые, в свою очередь, позволяют оценить значения показателя степени при ММ в уравнении Марка-Куна-Хаувинка (*a*) по соотношению:

$$a = \frac{4 * \alpha^2 - 3}{5 * \alpha^2 - 3},$$

Рассчитанные значения α и a также представлены в таблице. Их сопоставление показывает, что макромолекулы исследуемых ПЭ представляют собой гибкие клубки. Последнее набухшие подтверждается сильно значениями среднеквадратичных радиусов инерции макромолекул (R_s) синтезированных ПЭ. Из теории растворов полимеров известно, что, в термодинамически хороших растворителях для гибких клубков гидродинамический радиус макромолекул (R_h) составляет, как правило, 3/5 R_g. Учитывая это и экспериментально полученные значения R_h , R_g для исследуемых ПЭ должно было бы составлять величину порядка 51-59 нм. Поскольку значения A_2 достаточно малы и близки к нулю, то можно предположить, что вклад объемных взаимодействий по сравнению с электростатическими, в этом случае, оказывается не существенным. В силу чего определяющее влияние на размер макромолекул оказывает электростатическое отталкивание ионизированных звеньев макромолекулярных цепей. В этом случае можно оценить величину электростатического сегмента Куна

$$l_k^{el} = \frac{6R_g^2}{L},$$

где L контурная длина цепи. Для синтезированных ПЭ значения электростатического сегмента Куна также представлены в таблице 2.6. Из этих данных следует, что для образца ПЭ, полученного при концентрации 30 мМ, электростатический сегмент Куна составляет 24 нм. Заметное уменьшение электростатического сегмента Куна с ростом начальной концентрации мономера связано, скорее всего, cростом MM, приводит TOMY, ЧТО что макромолекулярные цепи становятся более гибкими

Таким образом, проведенные исследования показывают, что ПЭ, синтезированные на сфероидных мицеллах являются высокомолекулярными и их ММ в 1,3 – 2,5 раза выше, чем ММ ПЭ, полученных полимеризацией на цилиндрических мицеллах (100 – 300 мМ ДДСН) [50.] Приведенные данные полностью подтверждают наше предположение о том, что форма и поверхность

мицелл существенным образом влияют на молекулярную массу образующихся полиэлектролитов.

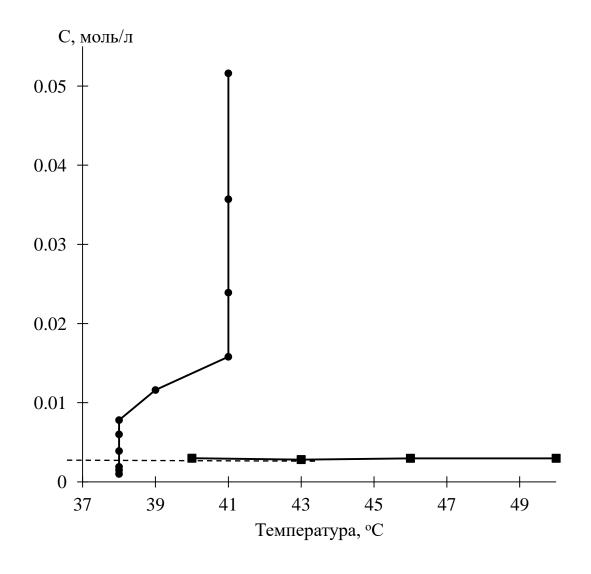
2.4 Особенности мицеллообразования ДДСН и его взаимодействия с мономером в бура-фосфатном буферном растворе

Вторым способом влияния на молекулярно-массовые характеристики получаемых ПЭ, является изменение механизма матричной полимеризации посредством изменения локализации инициатора в реакционной среде под влиянием рН. Собственное значение рН растворов мономер/ПАВ находится в области значений кислой среды (таблица 2.7). Поэтому в этом случае можно ожидать локализации инициатора на поверхности мицеллы, причем будет иметь место наиболее сильное электростатическое взаимодействие инициатора с поверхностью мицеллы, так как в кислой среде инициатор представляет собой двухзарядный ион. Подробно об этом написано выше в разделе 2.1.

Таблица 2.7 – рН водных растворов мономера, ПАВ и смеси мономер/ПАВ

[M],	[ДДСН],	[M]	рН	рН
моль/л	моль/л	[ддсн]	водного	в буферном
			раствора	растворе
2,0	-	-	2,41	-
	0,05		6,57	
	0,1		7,18	
2	0,3	6,67	2,61	
2	0,7	2,86	3,04	
0,1	0,1	1	4,30	7,3
0,2	0,2		4,28	7,3
0,3	0,3		4,67	7,3

Для создания нейтрального значения pH реакционной среды использовали бура-фосфатный буферный раствор (буфер позволяет поддерживать pH от 5,8 до 9,2, создавая при этом ионную силу ~ 0,11). Электролиты, составляющие буферный раствор могут оказать существенное влияние на мицеллообразование ДДСН и на его взаимодействие с мономером. Уменьшение ККМ ПАВ с введением электролитов обусловлено двумя основными причинами. Во-первых, электролит частично дегидратирует полярные группы ионов ПАВ, так как он связывает воду за счет гидратации своих ионов. Уменьшение гидратации ионов ПАВ повышает их склонность к ассоциации. Во-вторых, добавленный электролит уменьшает эффективную степень диссоциации ПАВ, как в истинном растворе, так и в мицеллярном состоянии. Данные, представленные в таблице 2.8, показывают, что ККМ₁ ПАВ, в буферном растворе резко уменьшается по сравнению с ККМ₁ ПАВ в воде.


Таблица 2.8 — Критическая концентрация мицеллообразования, точка Крафта ДДСН в воде и в бура-фосфатном буферном растворе (Na₂B₄O₇-KH₂PO₄, pH=7)

Система	KKM ₁ , мM	Точка Крафта, °С
ДДСН, 25°С	8,3	15-18
ДДСН-Буфер, 40°С	0,9-2	38-40
ДДСН-Буфер-М, 40°С	0,84-2	30-32

Такое сильное снижение ККМ1 скорее всего связано как со специфичным влиянием иона калия на ДДСН, так и с влиянием ионной силы раствора. Так, в работе [52] приведены данные о влиянии соли на ККМ1 ДДСН, при увеличении концентрации соли до 0,3 М (что равно ионной силе 0,3), ККМ1 ДДСН уменьшается практически на порядок и составляет ~0,8 мМ. По данным работы Li^+ , Na^+ , K^+ , ионы [139],ряду ионов калия из-за наименьшего гидродинамического радиуса и наиболее высокой поляризуемости связываются с поверхностью мицеллы ДДСН наиболее сильно. По-видимому, специфическое связывание ионов калия с поверхностью мицелл ДДСН и ионная сила,

оказываемая буферным раствором, вызывают столь существенное уменьшение ККМ₁ ДДСН в исследуемом буферном растворе.

Введение мономера мало сказывается на ККМ₁ ДДСН в буферном растворе и ставит под сомнение взаимодействие мономера с ПАВ в буферном растворе. Однако, Точка Крафта, которая характеризует нижний температурный предел мицеллообразования ионных ПАВ, у данных систем отличается. В воде для ДДСН составляет 18°С, тогда как в буферном растворе она возрастает до 38-40°С. В качестве примера, на рисунке 2.16 представлена фазовая диаграмма ДДСН в буферном растворе, видно, что растворимость ДДСН резко увеличивается при температуре 38°С и выше.

1 – линия температурной зависимости растворимости ПАВ; 2 – линия температурной зависимости ККМ.

Визимом 2.16 Ферород учествому ПЛСН в буферуем раствород

Рисунок – 2.16 Фазовая диаграмма ДДСН в буферном растворе

Пересечение двух линий – линии растворимости и линии ККМ – дает значение точки Крафта, которая для данной системы составляет 38°C. Поскольку в использованной методике точка полного растворения ПАВ определяется визуально, определенные значения точки Крафта представлены в виде узкого температурного интервала В таблице 2.8.Точка Крафта определяется соотношением энергий ПАВ в твердом кристаллическом состоянии и в мицеллярнных растворах [52, 141]. Если энергия мицеллярных растворов слабо зависит от противоиона, то, из-за параметров упаковки, энергия кристаллического состояния может резко изменяться. Именно поэтому точка Крафта ДДСН в бурафосфатном буферном растворе возрастает до 40°C. Сильное взаимодействие ионов К с ДДСН сдвигает равновесие в сторону кристаллического состояния ПАВ. Уменьшение точки Крафта до 32°C ДДСН в присутствии мономера указывает на его взаимодействие с ДДСН в буферном растворе. Известно, что органические противоионы, особенно c четвертичным атомом азота, характеризуются высокими степенями связывания с мицеллами ДДСН [140]. При введении мономера в раствор ДДСН в бура-фосфатном буферном растворе катион мономера замещает ионы калия, нарушает плотность упаковки ПАВ в кристаллическом состоянии, уменьшает энергию необходимую при переходе ПАВ из кристаллического стояния в мицеллярное, что и приводит к снижению точки Крафта.

Таким образом, проведенные исследования показывают, что буферный раствор оказывает существенное влияние на формирование мицелл ДДСН, что проявляется в резком уменьшении ККМ и существенном увеличении точки Крафта. Тем не менее, полученные результаты показывают, что компоненты буферного растворы не препятствуют взаимодействию мономера с мицеллами ДДСН, хотя это взаимодействие выражено слабее, чем в воде.

2.5 Влияние бура-фосфатного буферного раствора на молекулярномассовые характеристики получаемых полиэлектролитов

Ранее, в работе [50] было показано, что наиболее благоприятными условиями, способствующими сорбции мономера на цилиндрических мицеллах в воде, и протеканию полимеризации по матричному механизму являются: $0,5 < [{\rm Mohomep}]/[\Pi AB] < 2$ и $70 < [\Pi AB] < 150$ ммоль/л. В этих условиях была проведена МП только в качестве растворителя выступал буферный раствор с разным значением pH.

Результаты изучения гидродинамических свойств ПЭ, полученных при различных значениях pH реакционной среды представлены в таблице 2.9.

Таблица 2.9 – Характеристическая вязкость выделенных полиэлектролитов,

полученных в бура-фосфатном буферном растворе

[М]/ [ДДСН]	[ДДСН],	[M],		[η], дл/г	
	мМ	мМ	pH – 5,8	pH – 7,3	pH – 9,2
	100	100	1,75	1,95	0,18
1	200	200	2,35	2,69	1,80
	300	300	2,55	3,79	2,30

Из данных представленных в таблице видно, что значения характеристической вязкости ПЭ зависят от значения рН, при котором была проведена реакция полимеризации. Значения характеристической вязкости синтезированных ПЭ падают в ряду рН:

$$pH = 7.3 > pH = 5.8 > pH = 9.2$$

Можно полагать, что различие значений характеристической вязкости (а, значит и различие ММ) связано с влиянием локализации инициатора относительно мицелл ДДСН и их ассоциатов с мономером. Действительно, наличие двух зарядов в ионе инициатора в кислой среде способствуют его сильному электростатическому взаимодействию с мицеллами ДДСН. При распаде инициатора это может способствовать проявлению эффекта, подобного эффекту клетки. Два первичных радикала образовавшихся в результате распада

инициатора, из-за того, что каждый из них связан с мицеллой, будут рекомбинировать и будет происходить обрыв на первичных радикалах. В результате, эффективность инициирования уменьшается, что и приводит к уменьшению ММ. В щелочной среде полностью гидролизованный инициатор электростатически не связан с мицеллами ДДСН и находится в объеме раствора, в то время как мономер преимущественно весь электростатически связан с мицеллами ДДСН. В этих условиях, первичные радикалы, образовавшиеся при распаде инициатора, не могут эффективно инициировать рост цепей, повидимому, из-за диффузионных ограничений. В нейтральной среде наблюдается наивыешая характеристическая вязкость, особенно при концентрации 300мМ. наиболее перспективным Поэтому растворителем ДЛЯ получение высокомолекулярного ПЭ является буферным раствор с нейтральным значением pH.

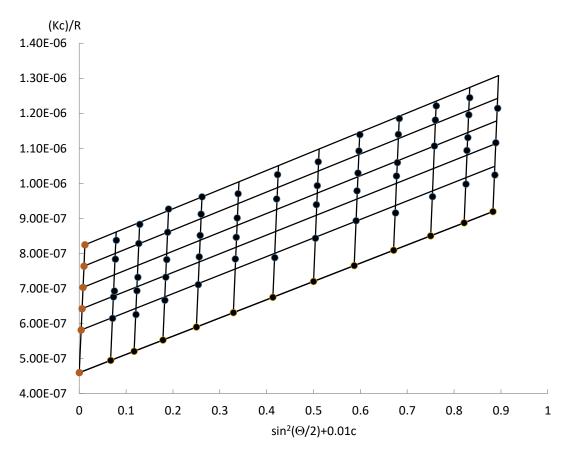
В таблице 2.10 представлены значения характеристической вязкости и констант Хаггинса ПЭ, синтезированных как в отсутствие ПАВ, так и в присутствии ПАВ в условиях эквимольного соотношения компонентов. Анализируя данные, представленные в таблице 2.10, можно отметить, что образцы полимеров, полученные полимеризацией на мицеллах ДДСН, имеют более высокие значения характеристической вязкости, что свидетельствует о более высокой молекулярной массе этих образцов.

Таблица 2.10 – Характеристическая вязкость выделенных полиэлектролитов,

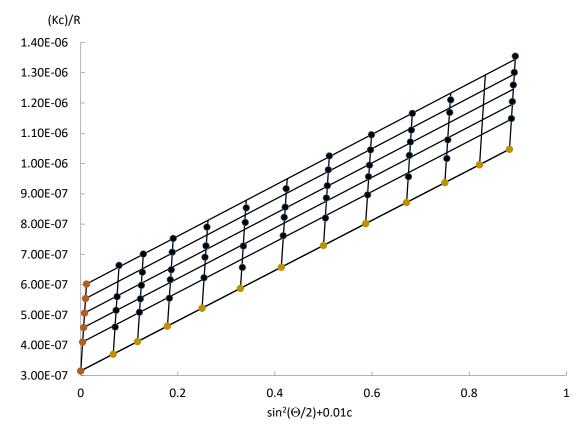
полученных в бура-фосфатном буферном растворе (рН=7,3)

[М]/ [ДДСН]	[ДДСН],мМ	[М], мМ	[η], дл/г	Кх
-	0	100	1,03	0,36
		200	1,51	0,46
		300	1,80	0,31
1	100	100	1,95	0,28
	200	200	2,69	0,24
	300	300	3,79	0,48

Константа Хаггинса, являющаяся мерой термодинамического качества растворителя, для всех образцов изменяется от 0,24 до 0,48, что свидетельствует о том, что 0,5 М раствор нитрата натрия является термодинамически хорошим растворителем. В таблице 2.11 приведены значения коэффициента асимметрии (I_{40}/I_{140}) , напрямую связанного с размерами рассеивающих частиц [142]. Совершенно очевидно, что для всех синтезированных образцов характерна сильная асимметрия рассеяния, что свидетельствует о больших размерах рассеивающих частиц. Отметим, что коэффициент ассиметрии для образцов ПЭ, полученных в отсутствие ДДСН, ниже, чем для образцов ПЭ, полученных в присутствии ДДСН, что указывает на больший размер макромолекул ПЭ, полученных МП.


Таблица 2.11— Асимметрия рассеяния I_{40}/I_{140} для образцов полиэлектролитов, полученных полимеризацией в буферных растворах на мицеллах ДДСН и в отсутствие ΠAB

cyterbile 117 t	<u> </u>					
[M]/	[ДДСН],моль/л	[M],	I_{40}/I_{140}	R_{50}	R ₁₃₀	R_{50}/R_{130}
[ДДСН]		моль/л				
-	0	0,1	1.30	36	33	1,09
		0,2	1,46	31	29	1,07
		0,3	1,59	40	32	1,25
1	0,1	0,1	1,74	38	32	1,19
	0,2	0,2	2,02	49	37	1,32
	0,3	0,3	2,36	57	40	1,43


Как показывают данные динамического светорассеяния (таблица 2.11) характерной особенностью распределений частиц по размерам, восстановленных из автокорреляционных функций является зависимость положения максимума от угла рассеяния. Необходимо отметить, что для всех ПЭ, синтезированных в работе распределения имели мономодальный характер. Следовательно, во всех изученных растворах существует только один сорт частиц, а расчет молекулярных масс этих полимеров с помощью диаграмм Зимма является обоснованным. Анализируя данные, представленные в таблице 2.11, необходимо отметить, что

разброс в значениях эффективного размера ПЭ, полученных в отсутствие ПАВ несколько ниже, чем разброс в значениях эффективного размера ПЭ, полученных в присутствии ПАВ.

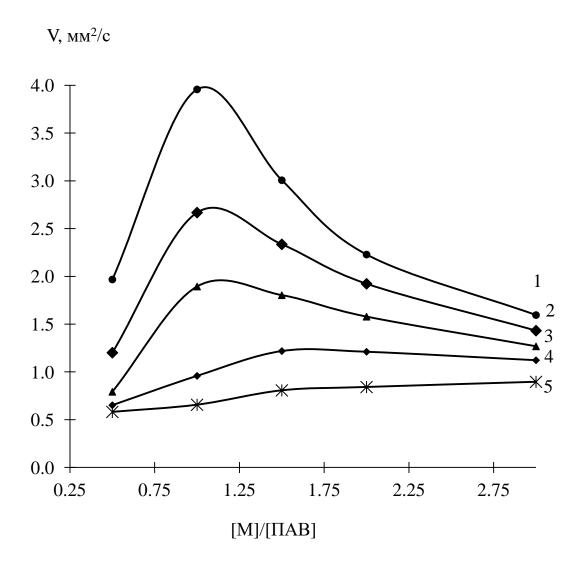
На рисунках 2.17 и 2.18 в качестве примера, представлены диаграммы Зимма для образцов полимеров, полученных как в присутствии ПАВ, так и без ПАВ, а в таблице 2.12 представлены основные молекулярно-массовые характеристики синтезированных полимеров.

Рисунок 2.17 — Диаграммы Зимма для образцов полиэлектролитов, полученных полимеризацией в буферном растворе в отсутствие ДДСН при начальной концентрации мономера 100 мМ

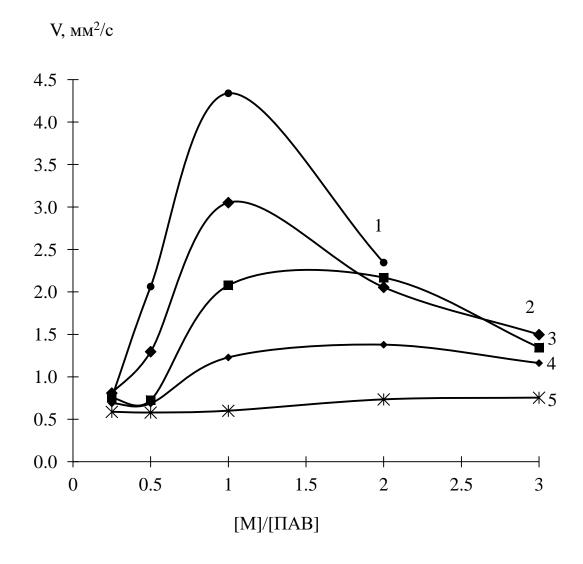
Рисунок 2.18 — Диаграммы Зимма для образцов полиэлектролитов, полученных полимеризацией в буферном растворе на мицеллах ДДСН в буферном растворе при начальной концентрации мономера 100 мМ

Из данных, представленных в таблице видно, что в случае полимеризации в отсутствие ДДСН замена воды на буферный раствор мало сказывается на ММ ПЭ. В зависимости от концентрации мономера ММ ПЭ варьируется от 1 до 2 млн. В тоже время, ММ ПЭ, полученных МП в буфере значительно выше. В таблице 2.12 также представлены данные динамического светорассеяния и значения отношения R_g/R_h , Для большинства ПЭ, полученных в буферном растворе это отношение оказывается больше 2, также как и в случае ПЭ, полученных в воде на сфероидных мицеллах. Это свидетельствует о том, что и в этом случае электростатические взаимодействия вносят существенный вклад в размер макромолекул. Мы полагаем, что рост ММ обусловлен, как увеличением размеров мицелл ПАВ под действием буфера, так и особенностями процесса полимеризации из-за локализации инициатора при рН=7. На влиянии этих двух факторов необходимо остановиться подробнее.

Таблица 2.12 – Статическое светорассеяние выделенных полиэлектролитов,


полученных в воде и в бура-фосфатном буферном растворе

	В Воде	пвоура	фосфатно	in of the	рном растворс		$(D) \cdot 10^8$	D /
[M],	[ДДСН],	[M]	$M_w \cdot 10^{-6}$	R_g ,	$A_2 \cdot 10^4$,	R _h ,	$(D_z)_0 \cdot 10^8,$ c_M^2/c	$R_{g}/$ R_{h}
мМ	мМ	[ПАВ]	1,1W 10	HM	cm^3 ·моль· Γ^{-2}	ни	CM /C	K _h
		Поли	меризация	і в буфе	рном раствор	e		
100			1.32	51	1,32	36	6,86	1,4
150			2,15	73	1,74	33	7,31	2,2
200	0	-	2.18	69	1,52	30	8,31	2,3
250			2,89	87	1,49	39	6,26	2,2
300			2,19	76	1,34	35	7,01	2,2
100	100		2,69	91	1,51	36	6,38	2,5
150	150		2,91	100	2,16	38	6,36	2,6
200	200	1	3,17	106	1,20	42	5,79	2,5
250	250		5,46	135	1,15	45	5,37	3,0
300	300		5,92	140	1,27	48	5,08	2,9
			Полиме	гризаци	я в воде			
100	0		1,30	-	-	-	-	-
200	0	$0^{[50]}$	1,80	-	-	-	-	-
300	0		2,10	-	-	-	-	-
100	100		0,90	55	1,58	30	8,3	1,8
200	200	$1^{[50]}$	1,20	61	-	31	7,8	2,0
300	300		1,40	86	2,61	41	6,0	2,1
			l .					


Первый фактор связан с ростом мицеллы (матрицы) и изменением реакционной среды. Так при 60°С ККМ₁, ККМ₂ и ККМ₃ ДДСН в буфере при эквимольном соотношении ДДСН/Мономер составляют 1,2, 19,6 и 115-124 мМ, соответственно. В воде ККМ₁, ККМ₂ и ККМ₃ ДДСН равны 3,6, 12 и 107-108мМ, соответственно. Увеличение ККМ₂ и ККМ₃ в буферном растворе, можно объяснить следующим образом. По всей видимости, введение буферного раствора

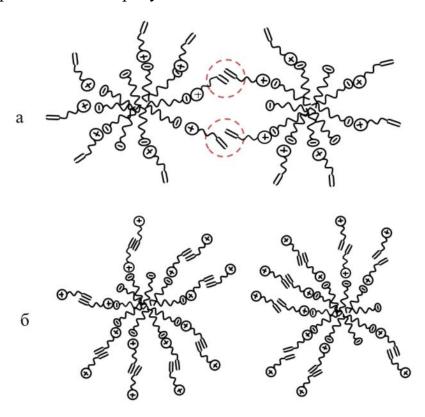
в систему мономер/ДДСН приводит к увеличению степени гидратации молекул ПАВ в мицелле, что приводит к увеличению ионизации молекул [72].

Однако данные по кинематической вязкости показывают, что после достижения ККМ₃, т.е. в области существования цилиндрических мицелл, которые могут образовывать сетку зацеплений [138], компоненты буферного раствора оказывают заметное влияние на характер зависимостей. На рисунках 2.19 и 2.20 приведены данные кинематической вязкости исходной системы (до полимеризации) от соотношения М/ПАВ в буферном растворе и в воде.

[ДДСН] = 1 - 300 мМ; 2 - 250 мМ; 3 - 200 мМ; 4 - 150 мМ; 5 - 100 мМ. **Рисунок 2.19** — Зависимость кинематической вязкости от мольного соотношения [ДДСН]/[Мономер] в бура-фосфатном буферном растворе, $t = 60^{\circ}$ C

[ДДСН] = 1-350 мМ; 2-280 мМ; 3-250 мМ; 4-200 мМ; 5-100 мМ. **Рисунок 2.20** – Зависимость кинематической вязкости от мольного соотношения ДДСН]/[Мономер] в воде, $t=60^{\circ}$ С

Как видно из рисунков, начиная с концентрации ДДСН 200 мМ в буферном растворе и 280 мМ в воде, зависимости приобретают экстремальный характер с максимумом, отвечающим эквимольному соотношению мономер/ДДСН. Более того, до ККМ₃ разница в кинетической вязкости в обоих системах не превышает 1-2%, а после образования цилиндрических мицелл, кинематическая вязкость резко возрастает в буферном растворе и разница уже составляет от 20 до 40% в зависимости от концентрации. Дальнейшее увеличение концентрации мономера (увеличение соотношение ДДСН/Мономер) приводит к падению вязкости, что связано с разрушением сетки зацепления из-за перезарядки ассоциатов


ДДСН/Мономер. Стоит подробнее остановиться на структурировании мицеллярного раствора до полимеризации, так как это на прямую влияет на кинетику и свойства получаемого ПЭ. Для объяснения обратимся к литературным данным:

Первое, соединения с двойными связями могут образовывать ассоциаты, за счет взаимодействия двойных связей между собой [13]. Так формирование таких ассоциатов возможно, исходя из химического строения мономера. За счет смещения электронной плотности в сторону акцепторной карбонильной группы происходит частичное протонирование атомов водорода при кратной связи и в метильной группе, что возможно приводит к водородному взаимодействию с основным центром соседней молекулы (атом кислорода в карбонильной группе с неподелённой электронной парой).

Второе, увеличение концентрации ПАВ после достижения ККМ $_1$ приводит к увеличению количества мицелл в системе, до следующих значений ККМ. И только при ККМ $_3$ количество мицелл растет, но также (существенно) растет и их линейный размер (числа агрегации).

буферном было отмечено выше, в растворе зависимости кинематической вязкости приобретают экстремальный характер, начиная с концентрации ДДСН 200 мМ и выше. Эта область концентраций отвечает существованию цилиндрических мицелл, так как ККМ3 для этой системы составляет 115-124 мМ. Исходя из этого, проявление экстремального характера зависимости следовало бы ожидать раньше, и зависимость для концентрации ДДСН 150 мМ должна бы была иметь экстремальный характер. Однако при этой концентрации зависимость не имеет ярко выраженного экстремального характера. Скорее всего, это связано с относительно низкой концентрацией и размерами цилиндрических мицелл (можно провести аналогию с концентрацией кроссовера для полимера). По-видимому, только при концентрации ДДСН 200мМ количество и размер ассоциатов мономер/ДДСН оказывается достаточным для образования сетки зацеплений. Для воды аналогичный процесс начинается при 280 мМ.

подробнее Остановимся немного предполагаемом на механизме ДДСН «сеткообразования». Мицеллы В отсутствие мономера имеют поэтому в силу электростатического отрицательный заряд, отталкивания формирование сетки зацеплений в чистых растворах ПАВ невозможно вплоть до очень высоких концентраций ПАВ (до таких концентраций, когда само понятие раствора теряет смысл). Противоположно заряженный мономер, связываясь электростатически с поверхностью мицелл, частично нейтрализует заряд на поверхности мицелл. Тем не менее, даже при экимольном соотношении мономер/ПАВ мицелла обладает остаточным зарядом, так как степень связывания противоионов с мицеллой, как правило, не превышает 85-90 %. Поэтому, в воде и буфере при эквимольном соотношении компонентов существуют агрегаты ДДСН/Мономер с обращенными в воду двойными связями. При дальнейшем увеличении концентрации мономера, он сорбируется вторым слоем, что формирует положительный заряд агрегата и приводит к их взаимному отталкиванию, схематично это представлено на рисунке 2.21.

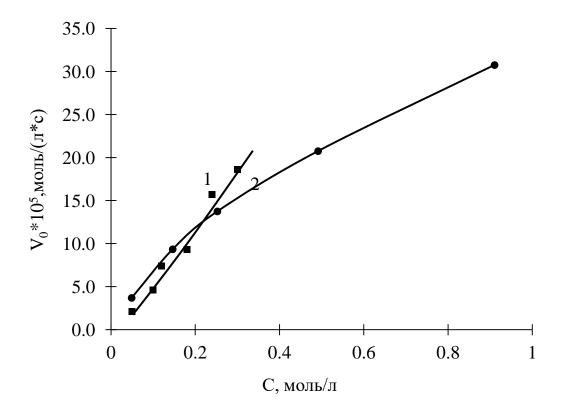
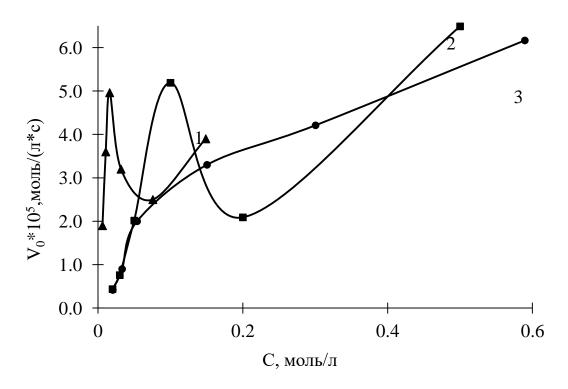


Рисунок 2.21 — Схематическое изображение формирования сетки зацеплений в мицеллярных растворах ДДСН, содержащих мономер, из-за ассоциации мономера по двойным связям (а) и разрушения этих ассоциатов из-за перезарядки мицелл с введением мольного избытка мономера (б).

Резюмируя все выше сказанное, следует, что добавка буферного раствора (неорганической соли) приводит к росту мицелл, это приводит к изменению исходной системы (до полимеризации). Экстремальный характер зависимости связан с образованием сетки зацепления (структурирования раствора) за счет взаимодействия двойных связей между агрегатами ДДСН/Мономер и который возможен после ККМ₃ и при определенном количестве и размере агрегатов. Более вязкая среда из-за сетки зацепления может приводить к более легкой передаче материальной цепи и, тем самым, приводя к росту ММ ПЭ.


2.6 Кинетические закономерности полимеризации ионогенного мономера на мицеллах ДДСН в воде и в бура-фосфатном буферном растворе

Методом спектроскопии ЯМР были изучены кинетические особенности радикальной полимеризации триметилметакрилоилоксиэтиламмоний метилсульфата в воде и в бура-фосфатном буферном растворе, как в отсутствие, так и в присутствии противоположно заряженного ПАВ – додецилсульфата натрия. На рисунках 2.22 и 2.23 представлены концентрационные зависимости начальной скорости полимеризации мономера в воде и в буферном растворе в отсутствие и в присутствии мицелл ДДСН. Скорость свободнорадикальной полимеризации мономера в воде и буферном растворе в отсутствии мицелл ДДСН мало отличаются друг от друга (рисунок 2.22). Это, скорее всего, связано с тем, что влияние низкомолекулярных солей на кинетику полимеризацию мономера очень мало. Как отмечено в монографии Кабанова В.А., теория ионных пар для данного мономера не применима [9] и, по всей видимости, данный полимер очень сильно связывает противоионы с образованием внутренних циклов и полимер становятся не заряженным [11]. Иная картина наблюдается при полимеризации в присутствии ДДСН как в буфере, так и в воде (рисунок 2.23).

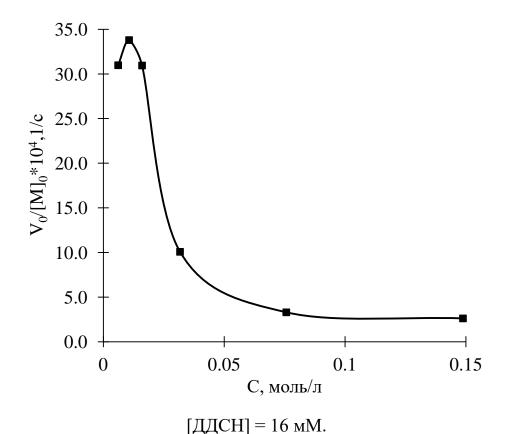
1 - в буфере; 2 - в воде.

Рисунок 2.22 — Концентрационная зависимость начальной скорости полимеризации мономера в отсутствие ДДСН, [I] = 0.5 мМ, t = 60°C

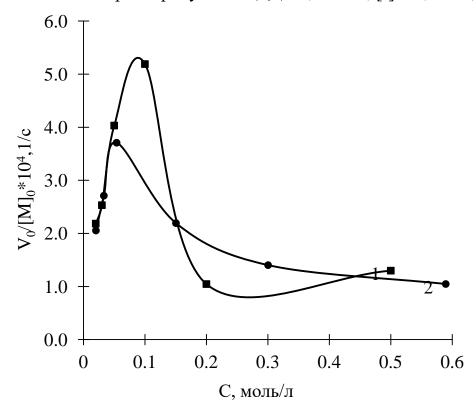
1-[ДДСН]=16мМ; 2-[ДДСН]=100мМ; 3-[ДДСН]=150мМ **Рисунок 2.23** — Концентрационная зависимость начальной скорости полимеризации мономера в присутствии ДДСН, в воде (1,3) в буфере (2), [I]=0,5 мМ, t=60°С

Зависимости скорости полимеризации на мицеллах ДДСН от начальной концентрации мономера (мольного соотношения Мономер/ДДСН) имеет ярко выраженный экстремальный характер с максимумом в точке эквимольного соотношения компонентов, при концентрациях 16мм (в воде) и 100мМ (в буфере), (зависимости 1 и 2). В воде при 150мМ зависимость не имеет экстремума (зависимость 3). Можно полагать, что наблюдаемые различия связаны с разными начальными условиями полимеризации, а именно с формой мицеллы. ККМ3 для исследуемой системы составляет 107-108 мМ и 115-124 мМ в воде и в буфере, соответственно. Выше этих концентраций мицеллы становятся цилиндрическими. ККМ₂ составляют 12 мМ и 20 мМ в воде и в буфере, соответственно. Обращаясь к данным рисунка 2.23, становится понятным, что зависимости 1 и 2 соответствуют случаю полимеризации на сфероидных мицеллах, зависимость полимеризации на цилиндрических мицеллах.

Переходя к рассмотрению возможного механизма формирования продуктов полимеризации, необходимо рассмотреть начальное состояние реакционной среды. Исходный раствор, содержащий ПАВ ([ПАВ] > ККМ) и мономер, состоит из мицелл ПАВ, молекулярно растворенного ПАВ, противоионов ПАВ, катионов анионов мономера. Количество любого из компонентов определяется концентрациями ПАВ и мономера, значением ККМ ПАВ, степенью связывания противоинов ПАВ с мицеллами. Рассматриваемая система является равновесной, т.е. в растворе существует равновесие между ПАВ в молекулярном и мицеллярном состоянии, между катионами мономера и противоионами ПАВ, находящимися в ассоциированном состоянии с мицеллой и в «свободном» состоянии в растворе. Кроме этого, мицеллы ПАВ являются образованиями динамичными, т.е. в растворе мицеллы постоянно распадаются и образуются, скорость этого процесса определяется временем релаксации (τ_2), которое зависит от природы ПАВ и его концентрации. Для упрощения полимеризацию в такой системе можно рассматривать, вводя понятие стационарного состояния, т.е. такого состояния реакционной системы, когда в ней отсутствуют какие-либо изменения во времени. Иными словами, в ней отсутствует динамический обмен


между ПАВ в молекулярной и мицеллярной формах, между катионами мономера, находящимися в растворе и в адсорбированном состоянии на поверхности мицелл. При этом мицеллы ПАВ существуют постоянно и их размер, задаваемый условиями синтеза, неизменен.

Как было отмечено ранее, форма мицеллы должна влиять на адсорбцию мономера. Из-за более плотной упаковки ионов ПАВ в цилиндрических мицеллах, количество адсорбированного мономера на мицелле может быть меньше. Однако, исследуемый мономер способен ассоциировать, поэтому он формирует второй адсорбционный слой. Поскольку из-за плотности упаковки адсорбция в первом слое затруднена, то количество мономера во втором слое может быть больше, что будет сообщать мицелле положительный заряд. Как было показано на рисунке 2.19, при концентрации ДДСН 150 мМ зависимость кинематической не имеет вязкости экстремума, следовательно, сформировавшиеся ассоциаты будут отталкиваться друг от друга, а передача растущей цепи на другую мицеллу будет затруднена. На сфероидных мицеллах, напротив, из-за плотности упаковки ионов в них создаются условия для максимальной адсорбции мономера. Подавляющее количество мономера может находиться в первом слое, и сформировавшиеся ассоциаты не будут иметь избыточно положительного заряда или он будет минимальным. В этом случае возможна передача цепи за счет столкновения этих ассоциатов. В результате, скорость полимеризации будет максимально высокой (зависимости 1 и 2 на рисунке 2.23 в точке эквимольного соотношения). Введение избытка мономера будет способствовать появлению избыточного положительного заряда на ассоциатах мономер/ПАВ и их отталкиванию, что и отражается в уменьшении скорости полимеризации.


Если же принцип стационарности не принимать во внимание, то ситуация усложняется. В нейтральной среде, когда ион инициатора имеет один заряд, при распаде инициатора первичный радикал, который не имеет заряда, должен диффундировать в раствор и инициировать полимеризацию в растворе за счет мономера, находящегося также в растворе. В результате, полимеризация будет

начинаться как на мицеллах, так и в растворе, что может привести к перекрестному росту цепей и отразится на механизме полимеризации.

На рисунках 2.24 и 2.25 показаны концентрационные зависимости приведенной скорости полимеризации. При полимеризации на мицеллах (концентрации ДДСН 16 мМ (рисунок 2.24) и 100мМ (рисунок 2.25, зависимость 1), приведенная скорость полимеризации растет вплоть до стехиометричного соотношения, а в точке эквимольности компонентов наблюдается ее максимум. Увеличение концентрации мономера сверх эквимольного соотношения приводит уменьшению приведенной скорости полимеризации, а при мольных соотношениях 2 < [М]/[ПАВ] < 5 приведенная скорость полимеризации незначительно возрастает (практически не изменяется), что, скорее всего, связано с большим содержанием несвязанного мономера и его гомополимеризацей. Для концентрации ДДСН 150мМ (зависимость 2, рисунок 2.25) соответствует соотношению мономер/ПАВ 50/150, т.е. его трехкратному недостатку. Увеличение концентрации мономера до эквимольного соотношения и выше при концентрации 150мМ приводит к уменьшению приведенной скорости полимеризации. Можно полагать, что это полностью подтверждает наше предположение о влиянии плотности упаковки ионов ПАВ в мицеллах и, соответственно, формы мицелл на формирование адсорбционных слоев мономера и влиянии этих закономерностей на кинетику полимеризации, о чем было написано выше при обсуждении рисунков 2.22 и 2.23. Экстремальный характер полимеризации наиболее похож на механизм по I типу (zip-типу) матричной полимеризации. Уменьшение приведенной скорости полимеризации с введением избытка мономера, несмотря на возрастающую брутто-концентрацию мономера, на наш взгляд, подтверждает влияние ПАВ на кинетику процессу.

Рисунок 2.24 — Концентрационные зависимости приведенной скорости полимеризации мономера в присутствии ДДСН, в воде, [I] = 0.5 мМ, t = 60°C

[ДДСН]: 1 - 100 мM; 2 - 150мМ.

Рисунок 2.25 — Концентрационные зависимости приведенной скорости полимеризации мономера в присутствии ДДСН, в буфере (1) в воде (2), [I] = 0,5 мМ, t = 60°C

Полученные экспериментальные данные по кинетике полимеризации, позволяют рассчитать порядки реакции полимеризации по инициатору, n_i и мономеру, n_m , а также энергию активации процесса полимеризации, E_a , (таблица 2.11). Анализируя данные, представленные в таблице 2.11, можно отметить, что кинетические параметры полимеризации в буферном растворе сильно отличаются от кинетических параметров полимеризации в воде.

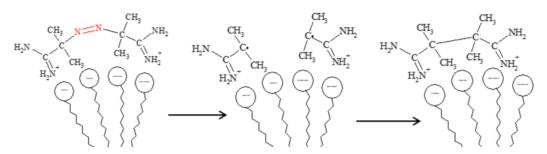

Отметим, что, во-первых, замена воды на буферный раствор приводит к изменению, как порядков реакции по мономеру и инициатору, так и энергии активации. Мы полагаем, что выявленные различия связаны с особенностями полимеризации ионогенных мономеров, и с влиянием буфера на этот процесс. Повышенный порядок по мономеру свидетельствует об ассоциировании мономера, а пониженный порядок по инициатору, по-видимому, связан с обрывом на первичных радикалах. Уменьшение энергии активации полимеризации происходит вследствие локального концентрирования мономера в ассоциатах.

Таблица 2.11 — Кинетические параметры полимеризации мономера мицеллярных растворах ДДСН, в воде (рН-4), в бура-фосфатном буферном растворе (рН-7,3)

Кинетический	Гомополимеризация		Матричная полимеризация, сфероидные мицеллы		
параметр	в воде (pH=4)	в буферном растворе (pH=7)	в воде (16мМ) (pH=4)	в буферном растворе (100мМ) (рH=7)	
n_{M}	1,00	1,22	1,52	1,21	
$n_{\rm I}$ $E_{\rm a},\kappa extstyle extstyle extstyle extstyle E_{ m a}, extstyle e$	0,5 96	0,39	0,29	0,43 62	

Однако, в контексте диссертационной работы представляется более интересным сравнить полимеризацию в отсутствие и в присутствии ПАВ. При полимеризации в воде, т.е. в кислой среде, порядки реакции по мономеру и инициатору отличаются от классических. Порядок реакции по мономеру составляет 1,52. В случае ионогенных мономеров, повышенный порядок реакции

по мономеру связывают с его ассоциированием. Мы полагаем, что в нашем случае, значение этого параметра, а также уменьшение энергии активации процесса в 2,2 раза, полностью подтверждает то, что мономер сорбируется на мицеллах. Порядок реакции по инициатору составляет 0,29. Понижение порядка реакции по инициатору обычно связывают с обрывом на первичных радикалах, процесс схематично представлен на рисунке 2.26.

Рисунок 2.26 — Схематичное изображение обрыва на первичных радикалов на мицелле ДДСН при полимеризации в воде (pH=4)

Действительно, в кислой среде инициатор прочно связан электростатически с поверхностью мицелл из-за наличия двух зарядов. В этом случае, при его распаде диффузия первичных радикалов может быть затруднена и будет наблюдаться эффект, подобный эффекту клетки, что и приводит к обрыву на первичных радикалах (рисунок 2.26). При полимеризации в буферном растворе порядки реакции и энергия активации изменяются и стремятся к значениям при полимеризации в отсутствие ПАВ, но все же немного отличаются. Однако схожие значения кинетических параметров не свидетельствует о том, что полимеризация не носит матричный характер. Подтверждением этому является приведенные выше размышления и значения молекулярной массы ПЭ полученных МП в буфере, которая в 2-3 раза выше, чем для гомополимеров.

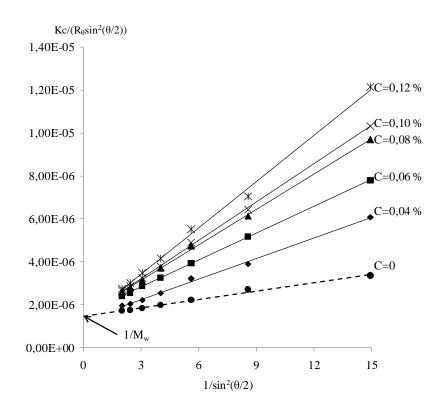
Как уже было отмечено ранее, гидролиз инициатора в нейтральной среде приводит к тому, что инициатор существует в растворе в виде однозарядного иона, поэтому его взаимодействие с ДДСН будет несколько слабее, чем в кислой среде. Это, в свою очередь, позволит нивелировать «эффект клетки», возможность обрыва на первичных радикалах уменьшается и, по-видимому, классический

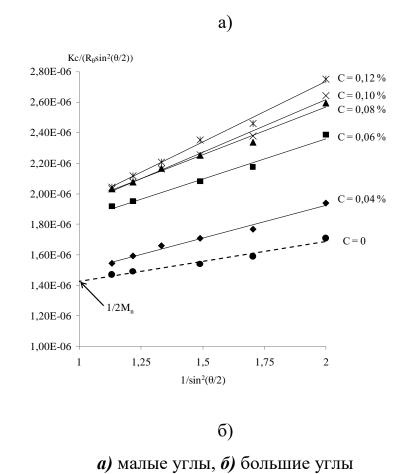
бимолекулярный обрыв становится более вероятным, о чем свидетельствует порядок по инициатору, стремящийся к 0.5 ($n_I = 0.43$, таблица 2.11).

Уменьшение порядка по мономеру с 1,52 до 1,21 следует, по-видимому, соотносить с тем, что мицеллы ДДСН в буферном растворе имеют большие размеры, чем в воде, что влияет на локальную концентрацию мономера в ассоциатах монмер/ПАВ. Кроме этого, также стоит учитывать специфичное влияние иона калия (сильное связывание с поверхностью мицелл) и, как следствие, его конкуренцию с мономером за место на ней.

Поэтому, наиболее вероятным механизмом МП является передача материальной цепи через соударения с соседними ассоциатами ДДСН/Мономер. Это объясняет несоответствие ММ получаемых ПЭ и размеров мицеллы. В растворах ДДСН до ККМ₃ мицеллы легко сталкиваются между собой, что и дает высокие ММ. В растворах ДДСН после ККМ₃ образуется сетка зацеплений, что приводит к диффузионным ограничениям и затрудняет передачу материальной цепи через соударения. При избытке мономера происходит перезарядка агрегатов ДДСН/Мономер, что дополнительно осложняет передачу цепи.

Таким образом, изучены кинетические закономерности полимеризации и показано, что на скорость полимеризации, порядки реакции полимеризации и энергию активации оказывают влияние форма мицелл, концентрация раствора ДДСН и рН реакционной среды.


2.7 Оценка полидисперсности полиэлектролитов, полученных полимеризацией ионогенных мономеров в мицеллярных растворах противоположно заряженного ПАВ


Как было отмечено во введении, свободнорадикальная полимеризация является наиболее распространенным способом получения полимеров, в том числе и полиэлектролитов. Однако получаемые полимеры обладают широким молекулярно-массовым распределением. Причиной полидисперсности является статистический характер элементарных реакций полимеризации, деструкции или

модификации полимеров. Полидисперсность оказывает значительное влияние на механические, физические и химические свойства полимерных материалов. Знание молекулярно-массового распределения может дать информацию о механизмах образования и превращения макромолекул.

Поскольку в матричной полимеризации полидисперсность дочернего полимера определяется полидисперсностью используемой матрицы, то оценка полидисперсности синтезированных полиэлектролитов представляется необходимым этапом работы.

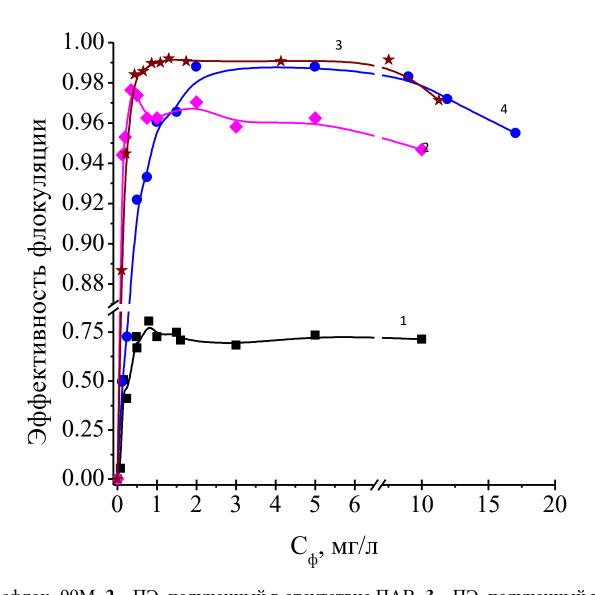
Необходимо отметить, что использование гель-проникающей хроматографии, которая обычно используется для определения коэффициентов полидисперсности, в нашем случае невозможно, из-за отсутствия подходящих стандартов. Наиболее часто используемыми стандартами являются образцы стиролсульфоната натрия. Однако, совершенно очевидно, что макромолекулы стиролсульфоната натрия и макромолекулы синтезированных полимеров должны обладать разными гидродинамическими размерами в силу различия в химической природе элементарного звена. На наш взгляд, их использование не совсем корректно. как по химической структуре элементарного звена, так и по молекулярной массе. Поэтому в рамках диссертационного исследования оценка полидисперсности проводилась по данным статического светорассеяния. Для этого использовали подход, предложенный Yang [146]. Для всех образцов строились обращенные диаграммы Зимма в координатах $Kc/(R_{\theta}\sin^2(\theta/2)) = f(1/\theta/2)$ $\sin^2(\theta/2)$. При этом графики строились раздельно для больших ($\theta > 90$) и малых (θ < 90) углов. Из графика для малых углов определяли среднемассовую молекулярную массу (M_w), а из графика для больших углов – среднечисленную молекулярную массу (M_n) . Отношение M_w/M_n характеризует коэффициент Пример обращенной полидисперсности полимера. диаграммы Зимма, построенной раздельно для больших и малых углов, для образца, полученного полимеризацией в буферном растворе при концентрации ДДСН 0,3 М и эквимольном соотношении компонентов представлен на рисунке 2.27.

Рисунок 2.27 — Обращенная диаграмма Зимма для образца ПЭ, полученного полимеризацией в буферном растворе при концентрации ДДСН 0,3 М и эквимольном соотношении компонентов

Коэффициент полидисперсности для данного образца полиэлектролита, вычисленный из обращенной диаграммы Зимма составляет 1,59. Аналогично были определены коэффициенты полидисперсности остальных синтезированных полиэлектролитов, которые представлены в таблице 2.12. Для сравнения в таблице также представлены данные для ПЭ, полученных свободнорадикальной полимеризацией в отсутствие ДДСН. Из данных, представленных в таблице, видно, полидисперсность ПЭ, полученных матричной полимеризацией меньше и варьируется в интервале от 1,48 до 2,33.

Таблица 2.12 — Коэффициенты полидисперсности полиэлектролитов, полученных полимеризацией М-ЭБ в мицеллярных растворах ДДС

[ДДСН], ммоль/л	[М], ммоль/л	M _w /M _n	Примечание
0	500 1600	3,00 4,30	[51]
30	30	1,48	
50	50	1,76	Помила
70	70	2,33	. Данные настоящей
100	100	1,52	работы
200	200	1,96	расоты
300	300	1,59	

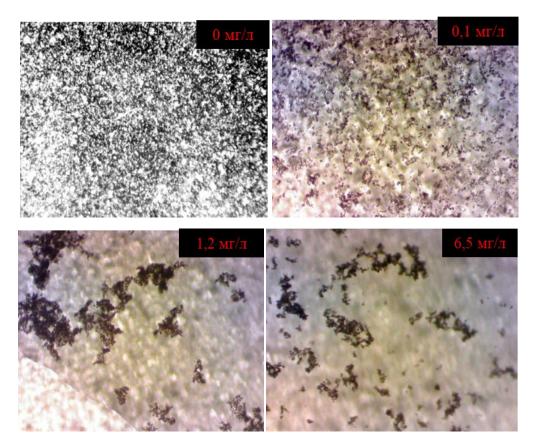

Можно также отметить, что в случае полимеризации в воде (полимеризация на сфероидных мицеллах) полидисперсность ПЭ увеличивается с ростом начальной концентрации мономера, что, наверное, является закономерным. Полидисперсность полимера определяется множеством факторов. На ее значение будет влиять механизм реакций обрыва цепи, наличие реакций передачи цепи, начальная концентрация мономера и пр. Полидисперсность ПЭ, полученных в буферном растворе, в меньшей степени зависит от начальной концентрации мономера. Независимо от способа получения ПЭ (в воде или в буферном

растворе) полидисперсность синтезированных ПЭ ниже, чем полидисперсность ПЭ, полученных свободнорадикальной полимеризацией в отсутствие ПАВ.

2.8 Изучение сорбционной способности продуктов полимеризации и флокулирующей способности полиэлектролитов, выделенных из продуктов полимеризации

Непосредственным продуктом полимеризации ионогенных мономеров на мицеллах ПАВ являются комплексы полиэлектролит — ПАВ. Их потенциальное практическое применение связано с сорбционной способностью внутримолекулярной мицеллярной фазы. Поэтому они могут найти применение в качестве сорбентов. Второе направление практического применения связано с использованием полиэлектролитов, выделенных из комплексов. Традиционно полиэлектролиты находят свое применение в качестве флокулянтов.

На рисунке 2.28 представлены результаты изучения эффективности флокуляции синтезированных полиэлектролитов и проведено их сравнение с коммерчески доступными флокулянтами Praestol-650 (Германия) и Росфлок-99М (Россия). Из данных, представленных на рисунке видно, что, синтезированный полиэлектролит (ПЭ МП) проявляет лучшую флокулирующую способность, при концентрации 1 мг/л. В то время как при использовании Praestol-650 сопоставимые значения приведенной мутности достигаются при концентрации 1 — 1,5 мг/л. Росфлок — 99 М в условиях эксперимента оказывается наименее эффективным.


1 – Росфлок -99М, 2 – ПЭ, полученный в отсутствие ПАВ, 3 – ПЭ, полученный в присутствии ПАВ, 4 – Praestol-650
 Рисунок 2.28 – Зависимость эффективности флокуляции суспензии каолина от концентрации добавленного флокулянта

В таблице 2.13 представлены гранулометрические характеристики суспензии каолина в присутствии исследуемых флокулянтов, а на рисунке 2.29 микрофотографии суспензии без флокулянта и в присутствии ПЭ, полученного матричной полимеризацией на мицеллах ДДСН. Из данных представленных в таблице видно, что использование полиэлектролита, синтезированного в работе, позволяет получить наиболее крупные флокулы с меньшей полидисперсностью по размерам по сравнению с Praestol-650.

Таблица 2.13 – Гранулометрические характеристики суспензии каолина в

присутствии флокулянтов

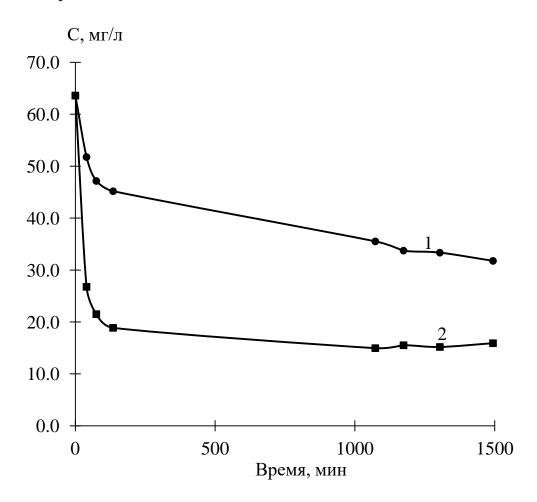

	Концентрация	Среднечисленный	Коэффициент	Степень
Флокулянт	флокулянта,	радиус частиц,	полидисперсности	агрегирования,
	$\mathrm{C}_{\mathrm{\varphi}}$, мг/л	R(n), мкм	частиц, Кп	$lpha_{ m s}$
-	-	10,7	0,6	1,0
	0,1	21,5	0,7	2,0
ПЭ МП	0,4	27,4	0,8	2,1
	1,2	54,0	0,6	5,0
	6,5	35,3	0,6	3,3
Pr-650	1	25,0	0,05	1,9

Рисунок 2.29 – Микрофотографии суспензии без флокулянта и в присутствии ПЭ МП различной концентрации

Сорбционную способность в диссертационной работе оценивали по сорбции фенола из воды. Наличие характерной полосы поглощения при 270 нм позволяет оценить концентрацию фенола до и после сорбции спектрофотометрическим методом. На рисунке 2.30 представлены зависимости концентрации фенола в воде

от времени. Видно, что примерно через два часа, концентрация фенола в воде практически перестает изменяться, что свидетельствует о достижении максимальной сорбционной емкости, которая закономерно зависит от концентрации сорбента в воде.

Концентрация комплекса: 1 - 0,017 г/мл; 2 - 0,039 г/мл **Рисунок 2.30** — Зависимость концентрации фенола в растворе от времени сорбции.

В таблице 2.14 представлены значения сорбционной емкости комплекса в сравнении с известными сорбентами.

Таблица 2.14 — Сорбционная емкость различных сорбентов по отношению к раствору фенола

Система	Сорбционная емкость,
	S, $M\Gamma/\Gamma$
Уголь	0,94
ПКК	1,10
Силикагель	0,00
Цеолит	0,00

Видно, что комплекс немного превосходит по своей сорбционной емкости такой известный сорбент, как активированный уголь.

3 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Синтез и очистка мономера

Мономер получали по реакции Меншуткина путем алкилирования диметиламиноэтилметакрилата в среде органического растворителя раствором диметилсульфата. Для этого к раствору диметиламиноэтилметакрилата в ацетоне, содержащем ~40 % масс. органического растворителя, при температуре (от -5 до-10°С) и интенсивном перемешивании по каплям приливали эквимольное количество 60 %-ного раствора диметилсульфата в том же растворителе. После смешения реагентов реакционную систему перемешивали в течение 2 часов и оставляли на 2-3 суток при 5-7°С. Реакция получения соли-мономера представлена ниже:

Выпавшую в осадок кристаллическую соль отфильтровывали, промывали на фильтре ацетоном и сушили в вакууме ($p_{\text{ост}}=1.5\text{-}2.0$ мм. рт. ст.) при комнатной температуре до постоянного веса.

Соль во избежание контакта с влагой воздуха хранили в герметично закрытой (залитой парафином) таре. Для синтеза мономеров использовали реагенты квалификации х.ч. (98 %). Исходный аминоэфир («Aldrich») дополнительно очищали от ингибитора перегонкой в вакууме. Отсутствие в мономере полимера контролировали по качественной реакции с ПАВ.

Пример № 1. Получение 96,96 г мономера. В колбу (объемом 250 мл), снабженную 51.55 (55,25)магнитным элементом, загружают мл) диметиламиноэтилметакрилата и 34,37 г (43,5 мл) ацетона. Затем колбу помещают в охлаждающую смесь, где поддерживается температура (от -5 до- 10° C). В капельную воронку заливают 30,27 г (38,32 мл) диметилсульфата и 45,41г (34,14 мл) ацетона. Раствор диметилсульфата в ацетоне по каплям, при перемешивании приливают интенсивном раствору К

диметиламиноэтилметакрилата в ацетоне. Реакционную массу перемешивают в течение 2 часов после смешения реагентов и оставляют на 48 ч при температуре, не превышающей 7°С. Полученную соль отфильтровывают, промывают ацетоном и сушат в вакууме до постоянного веса. Масса полученной соли составляет 92,1 г, выход составляет 95 % от теоретического.

3.2 Приготовление растворов

Для приготовления растворов использовали деионизированную воду, которую готовили с использованием прибора «ВОДОЛЕЙ», сопротивление 100 кОм. В качестве буферного раствора использовали бура-фосфатный буферный раствор, предложенный И.М. Кольтгофом [143, 144], который готовили из $Na_2B_4O_7*10H_2O$ и KH_2PO_4 , в таблице 3.1 приведены навески для приготовления буферного раствора объемом 500 мл.

Таблица 3.1 – Навески для приготовления буферного раствора

рН	KH ₂ PO ₄ , г	Na ₂ B ₄ O ₇ *10H ₂ O, Γ
5,8	5,8052	0,7628
7,3	3,9438	3,5756
9,2	0,2524	9,1536

3.3 Синтез полиэлектролитов свободнорадикальной полимеризацией

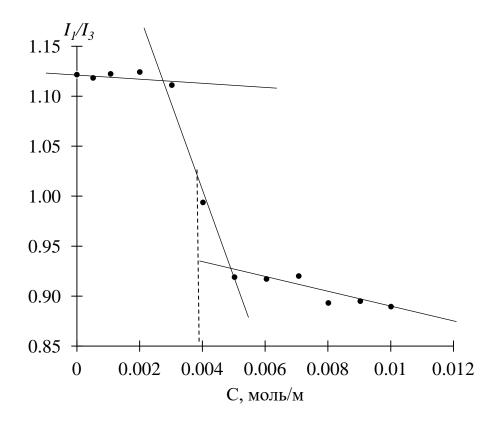
Полимеризацию мономера проводили в водном и в буферном растворе, при температуре $60\pm0,5^{\circ}$ С в виалах с винтовыми крышками. В качестве инициатора использовали 2,2'—азобис(2-метилпропионамидин)дигидрохлорид в виде водного раствора. В раствор мономера вводили инициатор, после чего в системе создавали инертную атмосферу путем продувки (10-15 мин) аргоном. Полученный ПЭ диализовали и лиофильно сушили до постоянной массы.

Пример № 2. Синтез свободнорадикального полимера в буферном растворе. Для приготовления 0,3 M раствора мономера в мерную колбу (объемом 10 мл), предварительно взвешенную на аналитических весах, загружают рассчитанную навеску мономера (0,85 г). Добавляют небольшое количество буферного раствора. После полного растворения навески мономера, в колбу добавляют 0,05 мл инициатора (концентрация исходного раствора 0,1 моль/л), раствор в колбе доводят до метки, перемешивают и переносят в виалу. Раствор продувают аргоном в течение 10-15 мин, после чего позакрывают в виалу винтовой крышкой. После завершения реакции ПЭ растворяют в дистиллированной воде и диализуют. Диализованный раствор замораживают и сушат лиофильно под вакуумом 0,03 мБар при минус 48°C. Высушенный ПЭ хранят в эксикаторе над P_2O_5 .

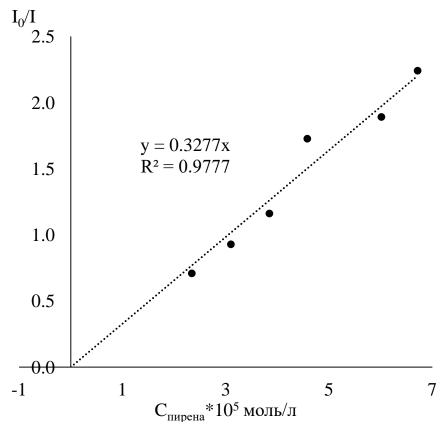
3.4 Синтез полиэлектролитов в мицеллярном растворе противоположно заряженного ПАВ

свободнорадикального ΠЭ, Синтез проводили аналогично синтезу описанному в примере № 2, с той лишь разницей, что в качестве растворителя использовали раствор ПАВ заданной концентрации. В синтезе фиксировали эквимольное соотношение мономера и ПАВ ([ДДСН]/[М]). Концентрация ПАВ была мицеллообразования выше критической концентрации (KKM_1) варьировалась от 0.015 до 0.70 моль/л, для водного раствора и от 0.1 до 0.3 моль/л для буферного раствора.

3.5 Определение ККМ ПАВ


Для определения ККМ ДДСН содержащие различные добавки были использованы следующие методы исследования: тензометрия, кондуктометрии, флуоресцентная спектрофотомерия, вискозиметрия и солюбилизация красителя.

Кондуктометрия. Сопротивление растворов ДДСН в широком концентрационном интервале измеряли на прецизионном измерителе LCR-819. Постоянство температуры поддерживали с помощью термостата. Далее


рассчитывали эквивалентную электрическую проводимость растворов и строили зависимость $\lambda = f(C^{1/2})$. ККМ ДДСН определяли графическим методом по пересечению двух касательных, построенных к начальному и конечному участкам зависимости, пример показан на рисунке 2.10.

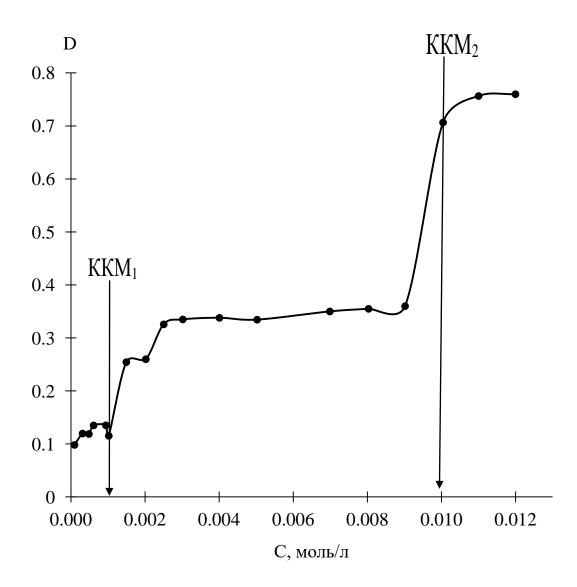
Флуоресцентного зонда — пирена, на спектрофлуориметре AgilentCaryEclipse (США). Готовили исходный раствор пирена в этаноле с концентрацией 1 ммоль/л и исходные растворы ДДСН с концентрацией ниже и выше ККМ₁. К 5 мл раствора ДДСН добавляли 10 мкл раствора пирена, что соответствовало концентрации пирена в образце $2 \cdot 10^{-6}$ моль/л. Раствор перемешивали в течение минуты и спустя 15-20 минут измеряли на спектрофлуориметреинтенсивность пиков при 373-374 нм и 393-394 нм, I_1 и I_3 соответственно. Находили отношение интенсивности I_1/I_3 и строили зависимость $I_1/I_3 = f(C)$.ККМ₁ определяли по точке перегиба на полученной зависимости, пример представлен на рисунке 3.1.

Числа агрегации определились с помощью флуоресцентного зонда — пирена и тушителя флуоресценции пирена — цетилпиридиний бромида. К 5 мл раствора ДДСН добавляли 10 мкл раствора пирена, и различные количества тушителя от 2,3 до 7,4*10⁻⁵ моль/л. Раствор перемешивали в течение минуты и спустя 15-20 минут измеряли на спектрофлуориметре интенсивность пиков при 394 нм, исходного раствора ПАВ без пирена, I_0 , и с добавками тушителя, I_0 . Находили отношение интенсивности I_0 / I_0 и строили зависимость I_0 / I_0 I_0 I

Рисунок 3.1 — Зависимость интенсивности I_1/I_3 от концентрации ДДСН

Рисунок 3.2 — Зависимость отношения интенсивности I_0/I от концентрации пирена

Число агрегации, N_{arp} , находили по формуле:


$$\ln \frac{I}{I_0} = \frac{N_{apr}}{[\Pi AB] - KKM} Q \tag{3.1}$$

где Q – концентрация тушителя.

Тензометрические исследования. ККМ ДДСН в воде определяли методом измерения поверхностного натяжения на цифровом тензиометре KRÜSS K20 (Германия)с использованием пластины (метод Вильгельми).Во избежание погрешностей измерения и преждевременного отрыва пластины, связанных с колебаниями тензиометр, устанавливали на систему активной виброизоляции Halcyonics Nano30 производства Accurion (Германия). Перед каждым измерением пластину многократно промывали этиловым спиртом, дистиллированной водой и обжигали в пламени горелки до красного свечения. Строили зависимость $\sigma = f(C)$, KKM_1 ДДСН определяли графическим методом ПО пересечению касательных, построенных к начальному и конечному участкам зависимости, пример показан на рисунке 2.8.

Солюбилизация маслорастворимого красителя. ККМ ДДС в присутствии мономера определяли методом солюбилизации маслорастворимого красителя OilYellow OB, имеющего формулу:

Готовили серию растворов с концентраций от 0,0001 до 0,015 моль/л, вносили маслорастворимый краситель5 мг на 5 мл раствора. Растворы выдерживали в течение недели, периодически встряхивая в шенйкере-инкубаторе ВЅ. Для отделения избытка красителя растворы центрифугировали на препаративной центрифуге при 15000 об/мин в течении 15 мин (Centrifuge 5415 D), после чего измеряли оптическую плотность при длине волны 346нм. По резким скачкам на кривой зависимости D=f(C) определяли ККМ системы, пример на рисунке 3.3.

Рисунок 3.3 — Зависимость оптической плотность раствора D от концентрации ДДСН при эквимольном соотношении [ДДСН]/[Мономер]

Капиллярная вискозиметрия. Для определения ККМ ПАВ измеряли вязкость растворов в капиллярном вискозиметре Уббелоде (d = 0,54 мм), предварительно 25°C. термостатированныхпри Разбавление растворов осуществляли непосредственно в вискозиметре, добавляя по 2 мл растворителя, тщательно перемешивая и термостатируя раствор после каждого разбавления. Строили зависимость приведенной вязкости от концентраций ПАВ в растворе. ККМ ДДСН определяли графическим методом ПО пересечению двух касательных, построенных к начальному и конечному участкам зависимости. Пример показан на рисунке 2.9.

3.6 Выделение полиэлектролитов из комплексов, синтезированных полимеризацией в мицеллярных растворах додецилсульфата натрия

Возможность выделения индивидуального Π Э из комплекса основана на подавлении электростатических взаимодействий в комплексе Π Э — Π AB при увеличении ионной силы растворителя.

Пример №3. В пузырьках на 50 мл взвешивают 0,1 г сухого осадка, добавляют 40 мл раствора NaCl 3,5M. Содержимое пузырьков выдерживают в течение 8 дней, периодически интенсивно встряхивая. Под действием высокой ионной силы комплекс переходит в растворенное состояние, при содержимое пузырька представляет собой смесь мелкодисперсного взвешенного ДДСН, стабилизированного раствором полимера. Для полного выделения ДДСН в систему добавляют BaCl₂, который связывает ДДСН в нерастворимую соль – додецилсульфат бария. Далее раствор фильтруют через бумажный фильтр, диализуют для удаления хлорида натрия (3-5 дней). Контроль за отмыванием раствора полимера от соли осуществляют по измерению концентрации ионов С1 с «Мультитест-ИПЛ-513». Очищенный раствор иономера ΠЭ помощью лиофильно сушат лиофильной сушке «FreeZone». замораживают И на Высушенный ПЭ хранят в эксикаторе над P_2O_5 . Отсутствие ПАВ в выделенных образцах контролировали элементным анализом, который проводили на приборе «Карло Эрба 1106» (Италия) в лаборатории микроанализа ИНЭОС РАН. Ошибка определения содержания азота и серы (в масс. %) не превышает 0,1 % от измеряемой величины. По данным элементного анализа выделенные полиэлектролиты не содержали серы, что подтверждает полное удаление ПАВ из образцов в процессе их выделения и очистки.

3.7 Определение характеристической вязкости синтезированных полиэлектролитов

Для изучения гидродинамических свойств, выделенных ПЭ использовали метод капиллярной вискозиметрии и использовали уравнение Хаггинса:

$$\frac{\eta_{\rm yg}}{C} = [\eta] + k\eta^2 C$$

В качестве растворителя использовали водно-солевой раствор NaNO₃ 0,5M и 1M. Разбавленный водно-солевой раствор полимера заданной концентрации готовили за сутки до измерений. Вязкость растворов ПЭ измеряли в капиллярном вискозиметре Уббелоде (d=0,54 мм) при термостатировании (20 $^{\circ}$ C). Фиксировали время истечения чистого растворителя (τ_0) и приготовленных полимерных растворов (τ). Далее рассчитывали удельную вязкость растворов по формуле 3.2:

$$\eta_{y\pi} = (\tau - \tau_o)/\tau_o, \tag{3.2}$$

где η_{va} - удельную вязкость раствора ПЭ,

 τ_{o} – среднее время истечения чистого растворителя, с,

au — среднее время истечения раствора полимера определенной концентрации, c;

и приведенную вязкость по формуле 3.3:

$$\eta_{\rm np} = \eta_{\rm yz}/C, \tag{3.3}$$

где $\eta_{\text{пp}}$ - приведенная вязкость раствора ПЭ, дл/г,

С – концентрация раствора ПЭ, определяемая по формуле 3.4:

$$CV = C_0 V_0 \tag{3.4}$$

где C_0 – исходная концентрация раствора ПЭ, г/дл,

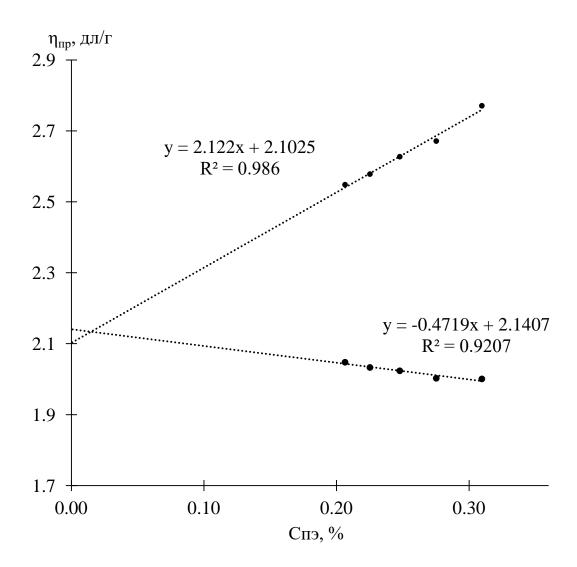
 V_0 – исходный объем раствора ПЭ с концентрацией C_0 , мл,

V – объем системы, образующийся при последовательном разбавлении, мл.

По концентрационной зависимости приведенной вязкости раствора ПЭ, экстраполяцией к нулевой концентрации полимера определяли характеристическую вязкость [η].

Для проверки, определяемой характеристическую вязкость [η], строили зависимость по уравнению Крэмера:

$$\frac{ln\eta_{\text{OTH}}}{C} = [\eta] - k\eta^2 C$$


Эксперимент по определению характеристической вязкости повторяли 2-3 раза и определяли характеристическую вязкость как средне из всех измерений.

Пример № 4. Готовят раствор ПЭ с массовой концентрацией 0,3 %. В качестве растворителя используют 0,5M раствор NaNO₃. В химический стакан взвешивают на аналитических весах 0,06 г сухого ПЭ, затем добавляют растворитель до суммы навески ПЭ и растворителя в стакане равной 20 г. Раствор ПЭ перемешивают до полного растворения и выдерживают сутки. В чистый сухой вискозиметр Уббелоде, укрепленный в термостате, наливают 14 мл растворителя $NaNO_3$ 0,5M, термостатируют при 20^{0} C в течение 30 мин, измеряют время истечения (τ_0) . Измерения проводят не менее четырех раз, причем отсчеты по секундомеру не должный расходиться более чем на 0,2с. Выливают растворитель из вискозиметра, вытесняя его из капилляра с помощью груши. Вискозиметр моют, сушат и устанавливают в термостат. В сухой вискозиметр помещают приготовленный раствор ПЭ, после термостатирования, измеряют истечения растворов при различных концентрациях, разбавляя раствор полимера непосредственно в вискозиметре последовательным пятикратным добавлением по 2мл чистого растворителя. Результаты измерения вязкости представлены в таблице 3.2.

Таблица 3.2 — Определение характеристической вязкости свободнорадикального полиэлектролита

Время истечения	С _{ПЭ} , %	т _{сред} , с	η _{уд}	$\eta_{\mathrm{пp}},$ дл/ Γ	[η], дл/г
ростроритаци	0,3097	171,12	0,8580	2,7707	
растворителя	0,2753	159,82	0,7353	2,6712	
0,5M NaNO ₃ ,	0,2477	152,04	0,6508	2,6271	2,10
$\tau_0 = 92,1 \text{ c}$	0,2252	145,57	0,5806	2,5781	
	0,2064	140,55	0,5261	2,5482	

По полученным значениям строят зависимость приведенной вязкости от концентраций ПЭ (рисунок 3.4), экстраполяцией к нулевому значению концентрации полимера определяют характеристическую вязкость [η]. Так же значение характеристическую вязкость [η] было получено с помощью уравнению Крэмера и дало практически одинаковые значения.

Рисунок 3.4 — Концентрационная зависимость приведенной вязкости раствора ПЭ полученного свободнорадикальной полимеризацией при начальной концентрации мономера 0.3M. [NaNO₃] = 0.5 моль/л, 20°C

3.8 Определение молекулярно-массовых характеристик полиэлектролитов методами светорассеяния

Молекулярно-массовые характеристики ПЭ, полученных в мицеллярном растворе ПАВ и выделенных из реакционной среды, определяли методом статического лазерного рассеяния света, являющегося абсолютным методом измерения среднемассовой молекулярной массы, вириальных вторых коэффициентов (A_2) среднеквадратичных радиусов инерции (R_{σ}) . Автокорреляционные функции флуктуаций интенсивности рассеянного света измеряли на широкоугловом фотометре рассеянного лазерного света PhotoCor (PhotoCor, USA) с помощью 280-канального логического коррелометра PhotoCor. Обработку результатов измерений проводили методами КУМУЛЯНТОВ регуляризации по Тихонову.

Инкремент показателя преломления растворов ($\frac{\partial n}{\partial c}$) измеряли с помощью дифференциального рефрактометра «Optilab T-rEX» фирмы «Waytt technology» с Не-Ne лазером мощностью 2 мВт, длиной волны 630 нм, в качестве источника света. При измерениях в качестве раствора сравнения использовали растворитель, приведенный в диализное равновесие с раствором. Определение M_w проводили методом двойной экстраполяции Зимма. Ошибка в определении M_w не превышала 10-15 %. Измерения интенсивности рассеянного света проводили в диапазоне углов рассеяния от 30° до 130° с шагом в 10° .

Пример № 5. Для проведения исследований по светорассеянию готовят раствор исследуемого образца с исходной концентрацией 0,12%. Растворы меньшей концентрации готовят последовательным разбавлением исходного. Растворы перед измерением тщательно обеспыливают путем многократного фильтрования через мембранные фильтры Millipore с размером пор 0,45 мкм. Измерения интенсивности рассеяния света проводят при 25°С в кварцевой кювете, предварительно термостатируя образец в течение 30 мин. Термостатирование кюветы с раствором осуществляют в кювете с иммерсионной жидкостью.

Статическое светорассеяние. Интенсивность рассеянного света измеряют в течение 15с 5 раз для каждого угла рассеяния, причем отклонения каждого измерения интенсивности не превышают 5% от средней величины. Результаты измерения интенсивности приведены в таблице 3.3. Обработку результатов проводят с помощью программы Light Scattering. Диаграмма Зимма для одного из исследуемых образцов представлена на рисунке 2.15. Линии экстраполяции на «нулевой» угол «нулевую» концентрации дают обратное значение среднемассовой M_w. В качестве примера в таблице 3.3 представлены данные для растворов ПЭ, полученного матричной полимеризации в воде при эквимольном соотношении при концентрации ДДСН 70мМ.

Таблица 3.3 — Экспериментальные значения интенсивности рассеянного света образца ПЭ в зависимости от угла рассеяния света и концентрации раствора ПЭ

Угол	Интенсивность, Гц							
рассеяния,	Растворитель,	Концентрация раствора ПЭ, %						
град.	0,5 M NaNO ₃	0,010	0,016	0,020	0,025	0,030		
140	1810	16255	23751	29694	39009	43516		
130	1633	14296	20707	25704	33009	37859		
120	1493	13435	19164	23716	30295	35066		
110	1454	12861	18494	23085	29649	34139		
100	1450	13232	19097	23816	30285	34960		
90	1389	14023	20058	25171	32332	37143		
80	1321	15446	22063	27508	35249	41145		
70	1335	17216	24893	30936	40177	46968		
60	1351	19817	29076	36106	46735	57153		
50	1411	24359	35726	43154	54543	69167		
40	1578	33104	45727	58856	72322	89000		
30	2023	45669	63204	78644	103163	138543		

 $⁻I_{T.T}$. 1022 Гц, $I_{\text{иммерс. жидк.}}$ 6838 Гц

Из наклона линии экстраполяции на «нулевой» угол определяют значение A_2 по формуле:

$$A_2 = \frac{tg\beta}{2} \tag{3.5}$$

Радиус инерции определяют из наклона линии экстраполяции на нулевую концентрацию по формуле:

$$R_g = \frac{3}{16 \cdot \pi^2 \cdot (\frac{n_0}{\lambda})^2} \cdot \frac{tg\alpha}{b}$$
(3.6)

где n_0 — показатель преломления растворителя;

 λ — длина волны, нм;

b – отрезок отсекаемый линией экстраполяции на оси ординат.

Пример № 6. Определение $\frac{\partial n}{\partial c}$. Готовят раствор 0,5% ПЭ в растворителе NaNO3 0,5 M, перемешивают и оставляют на сутки. Ставят измеряемый раствор ПЭ на диализ в растворителе в течение 3 дней. Из диализованного раствора ПЭ 0,5% готовят разные растворы с известной концентрацией разбавлением растворителем, приведенным в диализное равновесие с раствором.

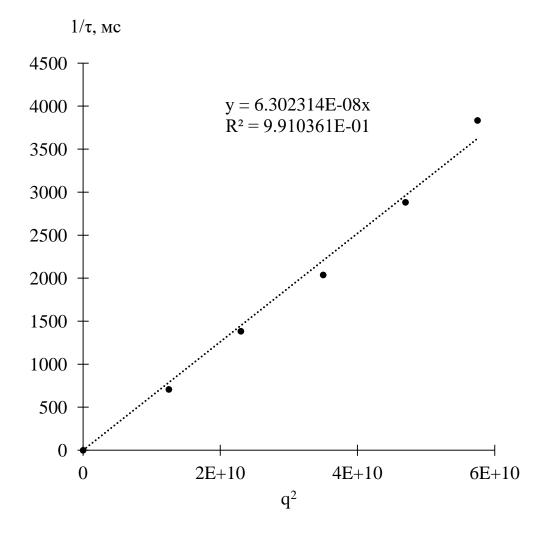
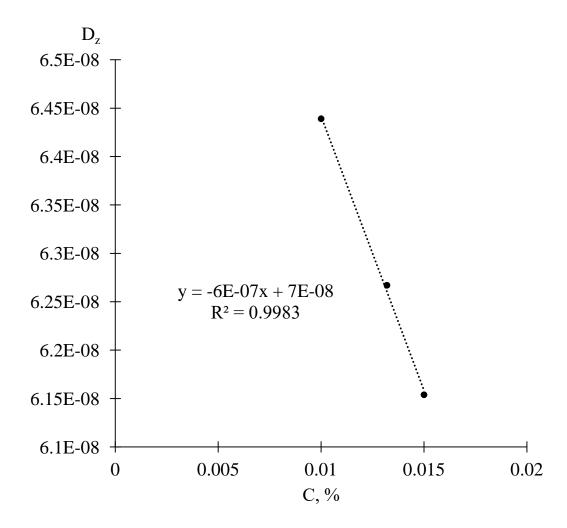

Для определения инкремента показателя преломления применяют метод дифференциальной рефрактометрии. Для этого в одну из ячеек измерительной кюветы заливают раствор известной концентрации, а в другую - растворитель, приведенный в диализное равновесие с раствором. Кювету термостатируют при 25°С. Подачу раствора и растворителя в кюветы осуществляют с помощью насоса Longer pump Isp01-1A со скоростью 0,28 мл/мин. Обработку результатов определения инкремента показателя преломления проводят с помощью программы ASTRA, входящую в комплектацию к прибору. Значения инкремента показателя преломления ПЭ, выделенных из водорастворимых продуктов полимеризации представлены в таблице 3.4.

Таблица 3.4 — Инкремент показателя преломления ПЭ выделенных из продуктов матричной полимеризацией буферном растворе

[M] ₀ , M	[ДДСН], М	Соотношение [М]/[ПАВ]	$\frac{\partial n}{\partial c}$
0,10	0,10	1	0,1370
0,15	0,15	1	0,1483
0,20	0,20	1	0,1477
0,25	0,25	1	0,1386
0,30	0,30	1	0,1360


Инкремент показателя преломления для свободнорадикального полимера равен 0,1230

Динамическое светорассеяние. Для определения коэффициентов диффузии автокорреляционную функцию флуктуации интенсивности рассеяния света копят в течение 5 минут для 5 углов рассеяния света. Обработку результатов динамического рассеяния света проводят с помощью программ ALV Correlator. Из каждой полученной автокорреляционной функции определяют время релаксации макромолекулы, после чего строят зависимость обратного времени релаксации макромолекулы от квадрата волнового вектора (рисунок 3.5) и определяют коэффициенты диффузии D_z как тангенсы угла наклона полученных зависимостей.

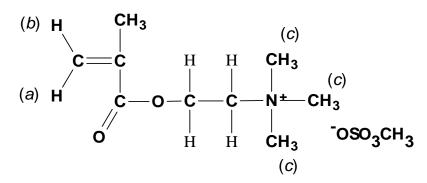
Рисунок 3.5 - Зависимостей обратного времени релаксации макромолекул от квадрата волнового вектора для образца ПЭ, полученного полимеризацией в мицеллярном растворе ДДСН. [ДДСН]=0,03 моль/л. [М]/[ДДС]=1. $C_{\Pi 9}$ =0,0193%.

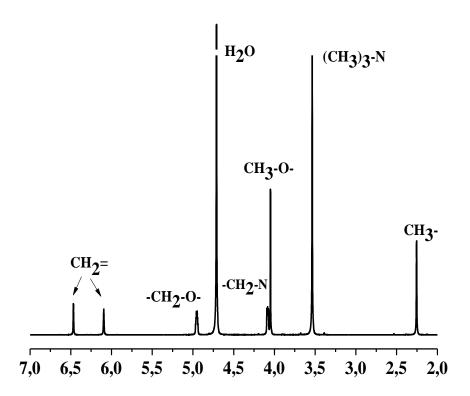
Далее из концентрационных зависимостей коэффициента диффузии определяют средний коэффициент трансляционной диффузии $(D_z)_o$. На рисунке 3.6 коэффициент трансляционной диффузии $(D_z)_o$ равен $6.3\cdot10^{-8}$.

Рисунок 3.6 - Зависимость коэффициента диффузии от концентрации раствора ПЭ, полученного полимеризацией в мицеллярном растворе ДДСН. [ДДСН] = 0.03 моль/л. [М]/[ДДС] = 1

Затем по уравнению:

$$(D_z)_0 = \frac{kT}{f} \tag{3.7}$$


определяют коэффициент поступательного трения f макромолекулы и, далее, в предположении, что макромолекулы представляют собой сферы, определяют ее гидродинамический радиус R_h по формуле:


$$f = 6\pi \eta_0 R_h \tag{3.8}$$

3.9 Изучение кинетики полимеризации методом ЯМР-спектроскопии

Кинетику полимеризации изучали методом спектроскопии ЯМР. Исследования выполняли в ресурсном центре "Магнитно-резонансные методы исследования" научного парка Санкт-Петербургского государственного университета, используя спектрометр ЯМР "Bruker Avance III 500" (рабочая частота 500 МГц на ЯМР 1Н).

Для этого приготовленный раствор помещали в чистую и сухую ампулу, продували аргоном в течение 5-7 минут, закрывали крышкой и устанавливали в ЯМР-спектрометр, предварительно термостатированный на 60°С. Момент погружения ампулы в спектрометр фиксировали и принимали за начальное время реакции. 1Н спектры ЯМР записывали через каждые 20 с как сумму 4-х сканирований. 1Н спектр ЯМР мономера представлен на рисунке 3.5.

Рисунок 3.7 — Спектр ЯМР 1Н триметилметакрилоилоксиэтиламмоний метилсульфата; растворитель D_2O , t = 60°C.

За кинетикой полимеризации следили, фиксируя интенсивность протонных сигналов от винильной группы (группы, а и b на приведенной выше структурной формуле мономера) и метильных заместителей в четвертичном атоме азота (группа с). Отношение интенсивностей сигналов групп (Int_a/Int_c или Int_b/Int_c) в начальный момент времени принимали за единицу. Изменение отношения интенсивностей сигналов по сравнению с единицей использовали для расчета значений конверсии.

Конверсию мономера (X, %) рассчитывали отдельно по группам, а и b по формуле:

$$X = (1 - Int)*100$$
 (3.9)

где Int — нормированная интенсивность сигнала группы, а или b (Int $_{\rm a}$ /Int $_{\rm c}$ или Int $_{\rm b}$ /Int $_{\rm c}$).

Используя, полученные значения X и начальную концентрацию мономера, [M]₀, рассчитывали текущую концентрацию мономера, [M]:

$$[M] = [M]_0 - (X^*[M]_0/100)$$
 (3.10)

Зависимость [M] = f(t) строили отдельно по группам, а и b, скорость полимеризации определяли, как тангенс угла наклона начального прямолинейного участка прямой (5 %< X <15 %). Результирующую скорость полимеризации рассчитывали, как среднее арифметическое из двух значений скоростей.

Порядки реакции полимеризации по инициатору и мономеру, а также энергию активации реакции определяли по стандартным методикам.

3.10 Методика флокуляции водной дисперсии каолина

Флокулирующую способность ПЭ, полученных матричной полимеризацией в мицеллярных растворах алкилсульфатов натрия оценивалимодельной водной суспензии каолина (марки КСД со среднеповерхностным радиусом частиц 18 мкм и концентрацией дисперсной фазы 0.8 масс %). Для приготовления суспензии использовалась дистиллированная вода. Каолин представляет собой вид белой глины, состоящий и з оксидов кремния 30-70 % и алюминия 10-40 %. Частицы каолина по большей части имеют отрицательный заряд с величиной электрокинетического потенциала 30 мВ.

Нахождение оптимальной концентрации флокулятна полученого матричной полимеризацией находили путем турбодиметрического титрования раствора каолина. Для сравнения полученных данных использовали коммерческие полиэлектролиты Praestol-650 и Росфлок — 99 М, данные приведены на рисунке 2.31.

Размер и форму флокул определяли методом оптической микроскопии (ОМ) с использованием цифрового микроскопического комплекса на основе микроскопа МБС-10. Для проведения эксперимента каплю с образцом суспензии наносят на предметное стекло, помещают под объектив микроскопа и визуально определяли размеры и форму агрегатов в поле зрения микроскопа (рисунок 2.31), проводили расчет линейных размеров частиц (табл. 3.5).

Таблица 3.5 – Экспериментальные данные ОМ суспензии каолина в присутствии ПЭ МП (увеличение микроскопа x4,5)

величение	г микрос R экв,	n	n·R	$n \cdot R^2$	$(n \cdot R^3) * 10^5$	$(n \cdot R^4) * 10^5$
MM	MM	11	пх	пК	(11 K) 10	(II K) 10
0,019	0,0093	1	0,009276	0,000086	0,0798	0,00074
0,036	0,0182	1	0,018248	0,000333	0,608	0,0111
0,043	0,0215	1	0,021515	0,000463	0,996	0,0214
0,045	0,0223	1	0,022339	0,000499	1,11	0,0249
0,048	0,0241	1	0,024081	0,00058	1,4	0,0336
0,049	0,0244	2	0,048802	0,001191	2,91	0,0709
0,050	0,0248	2	0,049502	0,001225	3,03	0,0751
0,051	0,0253	1	0,025335	0,000642	1,63	0,0412
0,053	0,0266	1	0,026562	0,000706	1,87	0,0498
0,054	0,0270	1	0,027043	0,000731	1,98	0,0535
0,056	0,0278	1	0,027827	0,000774	2,15	0,06
0,058	0,0289	2	0,057719	0,001666	4,81	0,139
0,059	0,0295	3	0,088437	0,002607	7,69	0,227
0,061	0,0306	2	0,061192	0,001872	5,73	0,175
0,064	0,0318	1	0,031755	0,001008	3,2	0,102
0,066	0,0328	1	0,032795	0,001076	3,53	0,116
0,070	0,0349	1	0,034929	0,00122	4,26	0,149
0,071	0,0353	1	0,035252	0,001243	4,38	0,154
0,074	0,0371	1	0,03715	0,00138	5,13	0,19
0,075	0,0376	1	0,037564	0,001411	5,3	0,199
0,076	0,0381	1	0,038133	0,001454	5,54	0,211
0,078	0,0390	2	0,077917	0,003036	11,8	0,461
0,079	0,0394	1	0,039354	0,001549	6,09	0,24
0,084	0,0421	1	0,042059	0,001769	7,44	0,313
0,088	0,0440	2	0,087998	0,003872	17	0,75
0,089	0,0445	1	0,044543	0,001984	8,84	0,394
0,090	0,0452	1	0,045233	0,002046	9,25	0,419
0,091	0,0453	1	0,04529	0,002051	9,29	0,421
0,095	0,0473	2	0,094595	0,004474	21,2	1
0,097	0,0485	2	0,097073	0,004712	22,9	1,11
0,102	0,0510	3	0,153076	0,007811	39,9	2,03
0,104	0,0519	2	0,10379	0,005386	28	1,45
0,105	0,0525	1	0,052488	0,002755	14,5	0,759
0,107	0,0533	3	0,159808	0,008513	45,3	2,42
0,109	0,0546	3	0,163663	0,008928	48,7	2,66
0,110	0,0551	2	0,110222	0,006074	33,5	1,84
0,112	0,0558	2	0,111619	0,006229	34,8	1,94
0,116	0,0582	2	0,116448	0,00678	39,5	2,3
0,117	0,0584	2	0,11689	0,006832	39,9	2,33
0,121	0,0604	1	0,0604	0,003648	22	1,33
0,124	0,0622	1	0,062196	0,003868	24,1	1,5
0,125	0,0624	1	0,062362	0,003889	24,3	1,51
0,126	0,0630	1	0,06298	0,003966	25	1,57
0,129	0,0643	1	0,064318	0,004137	26,6	1,71
0,134	0,0672	1	0,067223	0,004519	30,4	2,04
0,135	0,0673	1	0,067312	0,004531	30,5	2,05

Дэкв ,	R экв,	n	n·R	$n \cdot R^2$	$(n \cdot R^3) * 10^5$	$(n \cdot R^4) * 10^5$
MM	MM					
0,138	0,0688	3	0,206337	0,014192	97,6	6,71
0,139	0,0697	1	0,069735	0,004863	33,9	2,36
0,145	0,0724	1	0,072446	0,005248	38	2,75
0,147	0,0736	1	0,073566	0,005412	39,8	2,93
0,153	0,0763	1	0,076321	0,005825	44,5	3,39
0,154	0,0770	1	0,07704	0,005935	45,7	3,52
0,156	0,0781	1	0,078088	0,006098	47,6	3,72
0,159	0,0793	1	0,079285	0,006286	49,8	3,95
0,159	0,0795	1	0,079502	0,006321	50,2	3,99
0,160	0,0798	1	0,079761	0,006362	50,7	4,05
0,161	0,0805	1	0,080481	0,006477	52,1	4,2
0,162	0,0809	1	0,080886	0,006543	52,9	4,28
0,175	0,0874	1	0,087377	0,007635	66,7	5,83
0,176	0,0881	1	0,088135	0,007768	68,5	6,03
0,181	0,0907	1	0,090666	0,00822	74,5	6,76
0,215	0,1076	1	0,1076	0,011578	124,6	13,4
0,244	0,1219	1	0,12186	0,01485	181	22,1
0,248	0,1240	1	0,123979	0,015371	190,6	23,6
0,258	0,1288	1	0,128831	0,016597	213,8	27,5
0,290	0,1452	1	0,145249	0,021097	306,4	44,5

Для нахождения среднего радиуса частиц реальную полидисперсную систему условно заменяют идеальной монодисперсной системой с частицами правильной формы и одинакового размера. Способы усреднения могут быть различными, в зависимости от того, какие параметры полидисперсной системы и заменяющей ее монодисперсной системы предполагаются одинаковыми (число частиц, поверхность, масса или объем). Наиболее часто используют следующие виды усреднения:

среднечисленный радиус R_n (одинаковое число частиц)

$$R_{n} = \frac{\sum n_{i} \cdot R_{i}}{\sum n_{i}}, \tag{3.11}$$

среднеповерхностный R_s (одинаковая суммарная поверхность)

$$R_{s} = \frac{\sum n_{i} \cdot R_{i}^{3}}{\sum n_{i} \cdot R_{i}^{2}},$$
(3.12)

среднемассовый $R_{\rm m}$ (одинаковая общая масса или объем частиц)

$$R_m = \frac{\sum n_i \cdot R_i^4}{\sum n_i \cdot R_i^3},\tag{3.13}$$

где n_i – число частиц данной фракции с радиусом R_i ;

 \sum n_i— суммарное число частиц в системе.

В рассматриваемом примере $R_n = 54$ мкм, $R_s = 79$ мкм, $R_m = 92$ мкм.

Коэффициент полидисперсности, характеризующий разброс частиц по размерам определяется отношением:

$$K_{II} = \frac{R_n}{R_m}$$
 (3.12)
 $K_{II} = 54/92 = 0.59$.

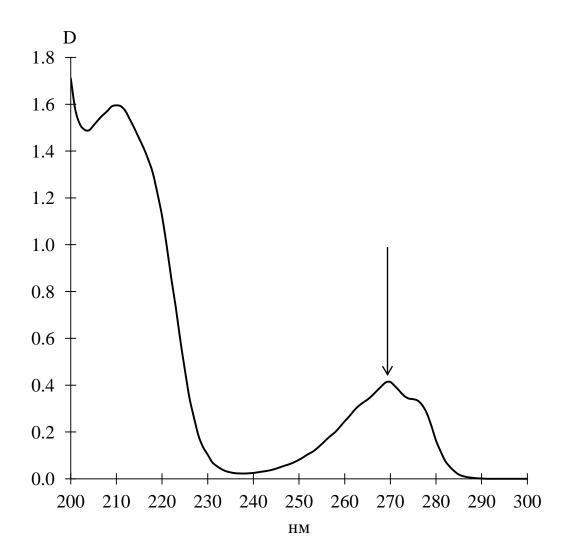
Степень агрегации находили как отношение средних размеров флокул в присутствии флокулянтов R и в их отсутствии R^0 . Например, для среднеповерхностной величины α_S :

$$\alpha_{S} = \frac{R_{S}}{R_{S}^{0}}$$

$$\alpha_{S} = \frac{79}{15,2} = 5,2.$$
(3.14)

Важным параметром является коэффициент асферичности флокул (фактор формы), необходимый для дальнейшего определения их плотности. Коэффициент находили по формуле [145]:

$$.\psi = \frac{R_{m}^{2}}{R_{s}^{2}}$$


$$\psi = 92^{2}/79^{2} = 1,36.$$
(3.15)

Аналогично проводили расчет методом оптической микроскопии для суспензии каолина в присутствии некоторых концентраций ПЭ МП Данные представлены в главе «Обсуждение результатов», таблице 2.11.

3.11 Методика сорбции органических веществ из водного раствора полимер коллоидными комплексами

Сорбционную способность ПКК оценивали по сорбции фенола из воды. Наличие характерной полосы поглощения при 270 нм позволяет оценить

концентрацию фенола до и после сорбции спектрофотометрическим методом, рисунок 3.8.

[фенола] = 24 мг/л

Рисунок 3.8 – Уф-спектр фенола в воде.

Статическую сорбционную емкость вычисляли по формуле:

$$S = \frac{(C_0 - C) * V}{m} \tag{3.16}$$

где C_0 , C — начальная и конечная концентрация фенола, мг/л,

V – объем раствора, л,

т – навеска сорбента, г.

Пример № 7. Готовили растворы фенола различной концентрации в воде для построения калибровочного графика, рисунок 3.9. После готовили растворы фенола с концентрацией 63 мг/л, в них помешали ПКК полученного матричной

полимеризацией на мицеллах ПАВ. И через промежутки времени измеряли оптическую плотность раствора. После пересчитывали оптическую плотность в концентрацию мг/л с помощью калибровочного графика. Данные приведены на рисунке 2.33.

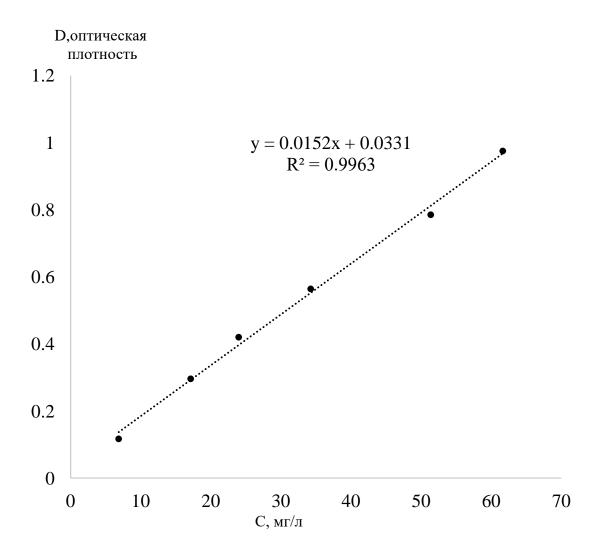


Рисунок 3.9 – Калибровочный раствор фенола в воде.

ЗАКЛЮЧЕНИЕ

диссертационной работе с целью дальнейшего данной направления, связанного с матричной полимеризацией ионогенных мономеров в противоположно заряженных ПАВ, мицеллярных растворах проведено исследование полимеризации триметилметакрилоилоксиэтиламмоний ПО метилсульфата на мицеллах ДДСН. Основной задачей исследования было молекулярную массу ПЭ, сохранив при ЭТОМ пониженный коэффициент полидисперсности.

более Необходимо подробное кинетическое исследование процесса полимеризации с целью полного выяснения механизма полимеризации и установления его взаимосвязи с формой мицеллы и локализацией инициатора. Представляется целесообразным также осуществить трудоемкий эксперимент по ПЭ получения фракций фракционированию ДЛЯ узкодисперсных синтезированных ПЭ и их использования в качестве стандартов для гельпроникающей хроматографии, что даст возможность определить точные значения коэффициентов полидисперсности.

По выполненной диссертационной работе можно сделать следующие выводы:

- 1. Впервые изучена полимеризация триметил[метакрилоилоксиэтил]аммоний метилсульфата, в мицеллярных растворах додецилсульфата натрия, содержащих добавки органической или неорганической природы в присутствии инициатора 2,2'—азобис(2-метилпропионамидин)дигидрохлорида (V-50), и показано, что продукты эквимольной полимеризации представляют собой комплексы полиэлектролит— ПАВ, а ПЭ, выделенные из этих комплексов характеризуются высокой молекулярной массой, пониженным коэффициентом полидисперсности, а также проявляют высокую сорбционную и флокулирующую способности.
- 2. Проведена полимеризация на мицеллах ПАВ, содержащих додециловый спирт в качестве органической добавки, в концентрационном интервале, отвечающем существованию мицелл сферической и/или сфероидной форм, и

показано, что полимеризация в этих условиях приводит к увеличению молекулярной массы получаемого ПЭ за счет реализации более эффективного взаимодействия мономер – ПАВ из-за изменения поверхности мицеллы.

- 3. Проведена полимеризация на мицеллах ПАВ в буферном растворе в концентрационном интервале, отвечающем существованию мицелл цилиндрической формы, и показано, что введение низкомолекулярных электролитов приводит к увеличению молекулярной массы получаемого ПЭ за счет влияния на размер мицелл ПАВ.
- 4. Изучена кинетика полимеризации в воде и в буферном растворе, как в отсутствие, так и в присутствии ПАВ и показано, что изменение рН среды меняет локализацию инициатора в матричной полимеризации, что приводит к увеличению молекулярной массы получаемого ПЭ.
- 5. Изучены молекулярно-массовые характеристики и проведена косвенная оценка полидисперсности синтезированных ПЭ и показано, что коэффициент полидисперсности составляет 1,48 2,33, что примерно в 2 раза меньше, чем полидисперсность ПЭ, полученных свободнорадикальной полимеризацией.
- 6. Изучена сорбционная емкость стехиометричных комплексов ПЭ-ПАВ, являющихся продуктом полимеризации, и показано, что комплексы проявляют высокую сорбционную способность, поглощая органические примеси из воды.
- 7. Изучена флокулирующая способность ПЭ, выделенных из комплексов, и показано, что они проявляют высокую флокулирующую способность и превосходят коммерчески доступные флокулянты.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Braun D. Polymer Synthesis: Theory and Practice Fundamentals, Methods, Experiments / D. Braun, H. Cherdron, M.Rehahn, H. Ritter, B. Voit // Springer-Verlad, Brelin; Heidelberg, 2013 402 p.
- 2. Schlute D.A. Synthesis of Polymer: New Structures and Methods. / D.A. Schlute, C. Hawker, J. Sakamoto // VCH, Weinheim 2012.
- 3. Tsarevsky N.V. Fundamentals of Controlled/Living Radical polymerization / N.V. Tsarevsky, B.S. Sumerlin // The Royal Society of Chemistry 2013 364 p.
- 4. Киреев В. В. Высокомолекулярные соединения: учебник для бакалавров. М.: Издательство Юрайт, 2013. 602 с. Серия: Бакалавр. Углубленный курс.
- 5. Полиакриламид. Л. И. Абрамов, Т.А. Байбурдов, Э.П. Григорян и др.; Под ред. В. Ф. Куренкова М.: Химия, 1992 192 с.
- 6. Практикум по высокомолекулярным соединениям. М.: Химия, под ред. Кабанов В.А. 1985.224с., ил.
- 7. Куренков В.Ф. Соросовский образовательный журнал, №5, 1997. Водорастворимые полимеры акриламида.
- 8. Громов В.Ф. особенности радикальной полимеризации водорастворимых мономеров / В.Ф. Громов, Е.В. Бунэ, Э.Н. Телешов / Успехи химии $1994 T.63 \ No 6 C. 530-542$.
- 9. Кабанов В. А., Топчиев Д. А. Полимеризация ионизирующихся мономеров. М.: Химия, 1978. 184 с.
- 10. Кабанов В. А. Об особенностях радикальной полимеризации ионогенных мономеров / В. А. Кабанов, Д. А. Топчиев // Высокомолек. соед. Сер. А. -1982. Т. 13, № 6. С. 1324-1347.
- 11. Особенности радикальной полимеризации мономеров ряда N,N-диалкиламиноэтилметакрилатов в водных растворах /А.И Мартыненко, А.М. Крапивин, А.В. Зезин, Д.А. Топчиев, В.А. Кабанов // Высокомолек. соед. Сер. А. 1982. T. 24, № 8. C. 580-582.

- 12. Кинетические эффекты низкомолекулярных солей при полимеризации триметламмонийэтилметакрилатметилсульфата в водных растворах до глубоких степеней превращения / Н. В.Колоколкин, М. А. Пенежкин, А. Д. Вирник, и др. // Высокомол. соед. Сер. А. − 1986. − Т. 28, № 1. − С. 147-151.
- 13. Ширшин К.В. Влияние ассоциации азотосодержащих (мет)акриловых мономеров на их радикальную полимеризацию в водных растворах / К.В. Ширшин, О.А Казанцев, А.П. Сивохин // Пластические массы, 2009 №11, с. 14-25.
- 14. Егоров В.В. Радикальная полимеризация мономеров, способных к ассоциации в воде (обзор) / В.В. Егоров, С.Ю. Зайцев, В.П. Зубов, // Высокомол. соед. Сер. А. 1991. Т. 33, № 8. С. 1587-1608.
- Логинова Н.Н., Полимеризация гидрохлорида N,Nдиэтиламиноэтилметакрилата в водных растворах / Н.Н. Логинова Р.К. Гавурина,
 М.Л. Александрова // Высокомол. соед. Сер. А. – 1969. – Т. 11, № 9. – С. 643-645.
- 16. Куренков В.Ф Влияние катионов лития, натрия и калия на радикальную полимеризацию солей 2-акриламидо-2-метилпропансульфокислоты в водных растворах/ В.Ф. Куренков, А.Г. Сафин, // Журн. прикл. химии. − 1998. − Т. 71. № 1, −С. 136-140.
- 17. Буданова Ю.Е. Полимеризация непредельных солей сульфокислоты Щвецов О.К., Маер Ж.А. // Журн. прикл. химии. 2001. Т. 74, № 1. С. 1182-1185.
- 18. Паписов И. М. Матричная полимеризация и другие матричные и псевдо-матричные процессы как путь получения композиционных материалов / И. М. Паписов // Высокомолекулярные соединения. Сер. Б. 1997. Т. 39, № 3. С. 562 574.
- 19. Tan, Y.Y. Template polymerization / Y.Y. Tan, G. Challa // Encyclopedia of Polymer Science and Engineering / Mark, H. F. [et all]. New York: Wiley, 1989. V. 16, p 554.
- 20. Tan, Y. Y. Template polymerization / Tan Y.Y. // Comprehensive Polymer Science and Supplements. 1989. V.3. P.245-259.

- 21. Papisov, I. M. Matrix polymerization / I.M. Papisov // In Polymeric Materials Encyclopedia / Salamone J. C. CRC press. 1996. 9600 p.
- 22. Голова Л.К. О влиянии синдиотактического полиметилметакрилата на процесс анионной полимеризации метилметакрилата / Л.К. Голова, Ю.Б. Америк, Б.А. Кренщель // Высокомолекулярные соединения. Сер. Б. 1970. Т. 12, № 8. С. 565-565.
- 23. Структурные и кинетические матричные эффекты при полимеризации 4-винилпиридина в водных растворах полистиролсульфоната натрия с додецилсульфатом / Наркевич Л.Д. [и др.] // Высокомолекулярные соединения. Сер. А. 1976. Т. 18, № 10. С. 2353-2356.
- Образование стереокомплексов в процессе полимеризации / О. В.
 Орлова [и др.] // Доклады АН СССР. 1968. Т. 178, №4. С. 889-896.
- 25. Исследование структурного матричного эффекта при полимеризации 4-винилпиридина в области рН>6,0 / Л.Д. Наркевич [и др.] // Высокомолекулярные соединения. Сер. А.- 1976.- Т. 18, № 7.-С. 1578-1585.
- 26. Polowinski, S. Template polymerization / S. Polowinski // Chem Tec Publishing. 1997 P. 150.
- 27. В.А. Кабанов Механизм матричного синтеза солевых полимер-полимерных комплексов / Кабанов В.А. Каргина О.В., Тетровская В.А. // Высокомол. соед. Сер. А 1971. Т. 13, № 2. С. 348-366.
- 28. Tsuchida, E. Polyelectrolyte complexes. / E. Tsuchida, K. Abe // Developments in ionic polymers. 1986. V. 5. P. 191-267.
- 29. G.O.R. Alberda van Ekenstein. A study of radical polymerization of N-vinylpyrrolidone in the presence of poly(methacrylic acid) templates by DSC / G.O.R. Alberda van Ekenstein, D.W. Koetsier, Y.Y. Tan // European Polymer Journal. −1981 − V. 17, №8. − P. 845-850.
- 30. Rajan, V. S. The non-aqueous polymerisation of N-vinylpyrrolidone in the presence of poly(acrylic acid) / V. S. Rajan, J. Ferguson // European Polymer Journal, − 1982. Vol. 18, №7. P. 633-638.

- 31. Кабанов, В.А. Кинетика и механизм полимеризации 4-винилпиридина на макромолекулах полиакриловой и поли-L-глутаминовой кислот / В.А. Кабанов, В.А. Петровская, В.А. Каргин // Высокомолекулярные соединения. Сер. А.- 1968 Т. 10, № 4.-С. 925-934.
- 32. Полимеризация 4-винилпиридина в водных растворах на макромолекулах полифосфата / А.Н. Гвоздецкий [и др.] // Высокомолекулярные соединения. Сер. А.- 1971 Т. 13, № 11 -С. 2409-2416.
- 33. Конкурентное ингибирование матричной полимеризации 4-винилпиридина на поликислотах / Наркевич Л.Д. [и др.] // Высокомолекулярные соединения. Сер. А. -1970. -T.12, № 8. -C. 1817-1823.
- 34. Полимеризация акриловой и метакриловой кислот на полиэтиленгликолях / Паписов И.М. [и др.] // Высокомолекулярные соединения. Сер. А. 1972. Т. 16, № 11. С. 2462-2471.
- 35. Критическая длина растущей цепи при матричной полимеризации метакриловой кислоты на полиэтиленгликоле / Ц.И. Недялкова [и др.] // Высокомолекулярные соединения. Сер. Б.- 1975. Т. 17, № 3. -С. 174-175.
- 36. Роль кооперативного взаимодействия растущих цепей и макромолекулярных матриц при полимеризации / Е. Осада [и др.] // Доклады Академии Наук СССР 1970 Т. 191, №2 С. 339-342.
- 37. "Узнавание" комплементарного мономера при матричной полимеризации в небиополимерной системе / О.В. Каргина [и др.] // Доклады АН СССР 1984 Т. 275, №3 С. 657-660.
- 38. В.А. Кабанов Комплексообразование между комплементарными синтетическими полимерами и олигомерами в разбавленных растворах / Кабанов В.А., Паписов И.М.// Высокомолекулярные соединения. Сер. А. 1979.- Т. 21, № 2.-С. 243-281.
- 39. В.Ю. Барановский Полимеризация метаркиловой кислоты в присутствии двух конкурирующих матриц / Барановский В.Ю., Гнатко Н.Н., Литманович А.А., Паписов И. М. // Высокомолекулярные соединения. Сер. А. 1989.- Т. 31, № 5.-С. 984-989.

- 40. Macromolecular substitution reactions and polymerization in the presence of two macromolecular matrices / I.M. Papisov [et al.] // Polymer Science. 1973. V.15, №9. P. 2259-2265.
- 41. J. Ferguson For examples of supramolecular catalysis of polymerization see / Ferguson J., Shah S. A. O // Eur. Polym. J. 1968. T. 4. C. 343-346.
- 42. V.S. Rajan The non-aqueous polymerisation of N-vinylpyrrolidone in the presence of poly(acrylic acid)/ Rajan V.S., Ferguson J.// Eur. Polym. J. 1982 T.18. C. 633-638.
- 43. A. Blumstein Polymerization in Organized Systems / A. Blumstein and S.R. Kakivaya // Ed. H. G. Elias, , Gordon & Breach, London 1977 p. 189.
- 44. E. Tsuchida Effects of macromolecular matrix on the process of radical polymerization of ionizable monomers / Tsuchida E., Osada Y. // J. Polym. Sci., Polym. Chem. 1975. T. 13 C. 599-603.
- 45. J. Gons Radical polymerization of methyl methacrylate in the presence of stereoregular poly(methyl methacrylate). V. Kinetics of initial template polymerization / Gons J., Vorenkamp E.J., Challa G. // J. Polym. Sci., Polym. Chem. 1975 T. 13 C.1699-1709.
- 46. J. Matuszewska-Czerwik Template photopolymerization of methacrylic acid—I. Photopolymerization of methacrylic acid on polyethylene glycol in an aqueous system / Matuszewska-Czerwik J., Polowinski,Eur S. // Polym. J. 1988 T. 24. C. 791-973.
- 47. J. Smid Effects of poly(2-vinylpyridine) as a template for the radical polymerization of methacrylic acid—II: Influence of initiator concentration / Smid J., Tan Y.Y., Challa G., // Eur. Polym. J. 1984 T. 20. C. 887-891.
- 48. J. Matuszewska-Czerwik Template photopolymerization of methacrylic acid—II. Photopolymerization of methacrylic acid on poly(vinyl-pyrrolidone) in aqueous systems / Matuszewska-Czerwik J., Polowinski S. // Eur. Polym. J. 1990 T. 26. C. 549-552.

- 49. Ferguson The polymerization of acrylic acid in the presence of copolymers containing interacting and non-interacting groups / Ferguson J., McLeod // Eur. Polym. J. -1974 T. 11. C. 1083-1091.
- 50. Духанина Е. Г. Полимеризация триметл[метакрилоксиэтил]аммоний метилсульфата в мицеллярных растворах алкилсульфатов натрия и свойства полученных полиэлектролитов: Дисс. канд. хим. наук ... 02.00.06: / Е. Г. Духанина, ВолгГТУ. Волгоград, 2015. 139 с.
- 51. Шулевич Ю.В. Матричная полимеризация ионных мономеров на мицеллах противоположно заряженных ПАВ: синтез, структура и свойства продуктов: Дисс. ... доктора хим. наук/ Ю.В. Шулевич Волгоград, 2016. 229 с.
- 52. Поверхностно-активные вещества и полимеры в водных растворах: учеб. изд.: пер. с анг. / К. Холберг [и др.]: Москва,: БИНОМ. Лаборатория знаний, 2007. 528 с.
- 53. Мукадисов, Н. И. Иследование некласических катионных ПАВ как компонетнов ингибитора коррозии / Н. И. Мукадисов, А. Р. Фархудинова, А. А. Елпидинский // Вестник казанского технологического университета. 2013. Т 16, вып. 14. С. 212-214.
- 54. Подчасская, Е.С. Влияние фонового электролита на предмицеллярную ассоциацию и среднюю активность ионов додецилсульфата натрия / Е.С. Подчасская, О.Г. Усьяров // Коллоидный журнал. 2005. Т.67, №2. С.206-212
- 55. Русанов, А.И. Мицеллообразование в растворах поверхностноактивных веществ. СПб.: Химия, 1992. 279 с.
- 56. Маркина, З.Н. Предмицеллярная ассоциация в водных растворах ионогенных и неионогенных ПАВ / З.Н.Маркина, Л.П. Паничева, Н.М. Задымова // ЖВХО им. Менделеева. 1989. Т. 34, №2. С. 245.
- 57. Dutkiewicz, E. Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles / E. Dutkiewicz, A. Jakubowska // Journal of Surface Science and Technology. − 2002. − V. 280, № 11. − P. 1009-1014.

- 58. Лобачева, Л. О. Ионная флотация катионов цериевой группы с применением поверхностно-активного вещества / Л. О. Лобачева, Д. Э. Чиркст, И. В, Берлинский // Вестник СПбГУ. 2010. Вып. 3. С. 131-134.
- 59. Surface tension isotherms, adsorption dynamics and dilational viscoelasticity of sodium dodecyl sulphate solutions / V.B. Fainerman [et al.] //Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. V. 354, № 1–3. P. 8-15
- 60. Eatough, D.J. A calorimetric investigation of micelle formation in aqueous sodium dodecylsulfate solutions / D.J. Eatough, S.J. Rehfeld // Thermochimica Acta. − 1971. V.2, №6. P. 443-456
- Shah, S.S. A study of micellization parameters and electrostatic interactions in micellar solution of sodium dodecyl sulfate / S.S. Shah, Akhtar Saeed, Q.M. Sharif // Colloids and Surfaces A: Physicochemical and Engineering Aspects. -1999. V.155, N = 2. P.405-412.
- 62. Asad Muhammad Khan Determination of critical micelle concentration of sodium dodecyl sulfate and the effect of low concentration of pyrene on its CMC / Asad Muhammad Khan, Syed Sakhawat Shah // Chemical Society of Pakistan. -2008. V.30, No.2. P.186-192.
- 63. Warr, G.G. Determination of Micelle Size and Polydispersity by Fluorescence Quenching Experimental Results / G. G. Warr, Franz Grieser, D. Fennel1 Evans // Journal of the Chemical Society Faraday Transactions. − 1986. −V. 82, №6. − P. 1829-1838.
- 64. Moroi, Y. Determination of micellar aggregation number of alkylsulfonic acids by fluorescence quenching method / Y. Moroi, R. Humphry-Baker, M. Gratzel // Journal of Colloid and Interface Science. − 1987. − V.119, №2 − P. 588-591.
- 65. ESR stidy of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions. Effect of urea / P. Baglioni [et al.] // The Journal of Physical Chemistry. − 1990. − V.94, №21. − P. 8218-8222.

- 66. Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance / Mohamed A. Bahria [et al.] // Colloids and Surfaces A: Physicochemical and Engineering Aspects. − 2006. − V. 290, № 1-3. − P. 206-2126.
- 67. Эффективные коэффициенты самодиффузии ионов в мицеллярных растворах додецилсульфата натрия / Ю. Ф. Зуев [и др.] // Коллоидный журнал. 2011. Т. 73, № 1. С. 43-49
- 68. Архипов, В.П. Связывание молекул растворителя мицеллами ионогенных поверхностно-активных веществ/ В. П. Архипов, З. Ш. Идиятуллин // Журнал физической химии. -2012. -T.86, № 1. -C. 150-154
- 69. Яковлева, А. А. К вопросу о критической концетрации мицеллообразования олеата натрия / А. А. Яковлева, С. Н. Чыонг, Ю. В. Придатченко // Известия вузов. Серия «Прикладная химия и биотехнология». 2013. N (4). C. 105-111.
- 70. Архипов, В. П. Размеры мицелл в водных растворах цетилтриметиламмоний бромида иследование методом ЯМР диффузометрии / В. П. Архипов, З. Ш. Идиятуллин // Вестник казанского технологического университета. 2009. N = 6. C. 45-51.
- 71. Малышева, Ж. Н. Теоретические и практическое руководство по дисциплине «Поверхностноые явления и дисперсные системы»: учеб. пособие / Ж. Н. Малышева, И. А. Новаков. Волгоград, 2007. 344 с.
- 72. Сердюк А. И., Кучер Р. В. Мицеллярные переходы в растворах поверхностно-активных веществ. Киев: Наук. думка, 1987. 204 с Сердюк А. И., Кучер Р. В. Мицеллярные переходы в растворах поверхностно-активных веществ. Киев: Наук. думка, 1987. 204 с.
- 73. Miura, M. The second CMC of the aqueous solution of sodium dodecyl sulfate. 1. Conductivity / M. Miura, M. Kodama // Bull. Chem. Soc. Jpn. − 1972. − V. 45, №2. − P. 428-431.
- 74. Zhao, J. NMR study of the transformation of sodium dodecyl sulfate micelles / J. Zhao, B.M. Fung // Langmuir. 1993. V.19, № 9. P. 1228-1231.

- 75. Dutkiewicz, E. Water Activity in Aqueous Solutions of Inhomogeneous Electrolytes/ E. Dutkiewicz, A. Jakubowska // J. Phys. Chem. B. − 1999. − V. 103, № 45. − P. 9898-9902.
- 76. Сердюк А. И., Наумов А. В., Червонцева Н. И. Влияние строения ионных ПАВ на перестройку мицелл из сферической формы в несферическую в их водных растворах // Коллоид. журн. 1985. Т. 47, № 2. С. 330–336.
- 77. Поверхностно-активные вещества: Справочник/ Абрамзон А.А., Бочаров В.В., Гаевой Г.М., и др.; под ред. А.А. Абрамзона и Г.М. Гаевого. Л.: Химия, 1979. 376 с., ил.
- 78. Миргородская, Б. A. Влияние гидроторопных добавок на солюбилизационные свойства мицеллярных растворов катионных ПАВ / А. Б. Миргородская, P. A. Кушназарова, A. M. Бекмухаметова // технологического университета. -2016. -T.19, № 24. -C.8-11.
- 79. Lopez-Grio, S. Chromatographia / S. Lopez-Grio, J.J. Baeza-Baeza, Garcia-Alvarez-Coque M.C., 1998. 663 p.
- 80. Micellar liquid chromatography retention model based on mass-action concept of micelle formation / L.P. Loginova [et al.] // Journal of Chromatography A. 2006. V. 1104, No 1-2. P. 190-197.
- 81. Bakshi, M.C. Micelle Formation by Sodium Dodecyl Sulfate in Water-Additive Systems/ M.C. Bakshi // Bulletin of the Chemical Society of Japan. 1996. V. 69, № 10. P. 2723-2729.
- 82. Samokhina, L. The Quantitative Characterization of Chemical Modification of Sodium Dodecyl Sulphate Micellar Solutions and Retention Model in Micellar Liquid Chromatography / L. Samokhina, L. Loginova, D. Stepanko // Tenside Surfactants Detergents. -2006.-V.43, Nole 1.-P.6-11.
- 83. Micellization of ionic surfactants in aqueous-rich region of organic solvants: A conductometric study of micellization behaviour of sodium dodecylsulfate in aqueous-rich region of 1-BuOH, 2-BuOH, t-BuOH at different temperatures / M.S. Chauhan [et al.] // Colloids and Surfaces A: Physicochemical and Engineering Aspects. -2000. V. 166, No 1-3. P. 51-57.

- 84. Berthod, A. Micellar Liquid Chromatography / A. Bertrod, Garcia-Alvarez-Coque C. New York.: Marcel Dekker Inc, 2000. 632 p.
- 85. Candau, S. Effect of alcohols on the properties of micellar systems: III. Elastic and quasielastic light scattering study / S. Candau, R. Zana // Journal of Colloid and Interface Science. -1981. V. 84, No 1. P. 206-219.
- 86. Нейман Р.Э. Практикум по коллойдной химии / Р.Э. Нейман [и др.] // Учеб. пособие для вузов. М., «Высшая школа», 1972 176 с.
- 87. Макаров, А. Л. Влияние добавок бензоата натрия на вязкость водных растворов бромида цетилтриметиламмония и концетрационные грацицы мицеллярной области / Л. А. Марков, И. Б. Пукинский, Н. А. Смирнова // Вестник Санкт-Петрербурского университета. 2009. Вып. 2. С. 73-79.
- 88. Миргородская А.Б. Влияние гидротропных добавок на солюбилизационные свойсва мицеллярхных растворов катионных ПАВ / Миргородская А.Б., Кушназарова Р.А., Бекмухаметова А.М., Гайнанова Г.А., Захарова Л.А. // Весник технологического университета. 2016. Т.19, №24. С.8-11.
- 89. Umlong, I.M. Micellization behaviour of sodium dodecyl sulfate in different electrolyte media / I.M. Umlong, K. Ismail // Colloids and Surfaces A: Physicochemical and Engineering Aspects. − 2007. − V. 299, № 1-3. − P. 8-14.
- 90. Umlong, I.M. Micellization Behaviour of Sodium Dodecylsulfate and Dioctyl Sulfosuccinate in the presence of Sodium Salicylate/ I.M. Umlong, K. Ismail // J. Surface Sci. Technol. 2006. V. 22, № 1-2. P. 101-117.
- 91. Зорин И. М Полимеризация мицеллообразующих мономеров / И.М. Зорин, Н.А. Зорина, Фетин П.А. // Высокомолекулярные соединения серия С -2022 Т. 64, № 2- С. 135-147.
- 92. Lerebours, B. Polymerization of cetyltrimethylammonium methacrylate direct micelles / B. Lerebours, B. Perly, M.P. Pileni // Progress in Colloid and Polymer Science. 1989. V. 79. P. 239-243.

- 93. Hartmann, P. C. Templating polymerization of dodecilammonium surfactants with polymerizable (meth)acrylate counter ions / P. C. Hartmann, R. D. Sanderson // Macromolecular Symposya. 2005. V. 225. P. 229-237
- 94. Gerber, M. J. Controlling dimensions of polymerized micelles: micelle template versus reaction conditions / M. J. Gerber, L. M. Walker // Langmuir. 2006. V. 22. P. 941-948.
- 95. Kline, S. R. Polymerization of rodlike micelles / S. R. Kline // Langmuir. 1999. V. 15. P. 2726-2732.16. Kline S.R. // J. Appl. Crystallogr. 2000. V. 33. P. 618-622.
- 96. Kuntz, D. M. Solution behavior of rod-like polyelectrolyte-surfactant aggregates polymerized from wormlike micelles / D. M. Kuntz, L. M. Walker // The Journal of Physical Chemistry. B. − 2007. − V. 111, №23. − P. 6417-24.
- 97. Walker, L. M. Wormlike micelles as a template for polymerization // L. M. Walker, D. M. Kuntz // Current Opinion in Colloid and Interface Science. -2007. V. 12. P. 101-105.
- 98. Bilibin A.Yu. Micellar polymerization of alkylammonium 2-acrylamido-2-methylpropane the sulfonates in solvents of different polarity and properties of resulting polyelectrolytesurfactant complexes / A.Yu. Bilibin, T.M. Scherbinina, Ju.A. Kondratenko, N.A. Zorina, I.M. Zorin // Colloid Polym Sci 2015. V. 293. P.1215–1225.
- 99. Zorin I.M. Core cross-linked polymerized micelles and dendronized nanoparticles. Macromolecular Symposia / I.M. Zorin, I.A. Makarov, T.S. Ushkova, A.B. Melnikov, E.A. Antonov, A. Yu. Bilibin // Macromolecular Symposia Special Issue: Modern Trends in Polymer Science − 2010. − V. 296. № 1. − P. 407-415.
- 100. Roy, S. Effect of hydrogen-bonding interactions on the self-assembly formation of sodium N-(11-acrylamidoundecanoyl)-1-serinate, 1-asparaginate, and 1-glutaminate in aqueous solution / S. Roy, J. Dey // Journal of Colloid and Interface Science. -2007. V. 307, No. 1. P. 229-234.
- 101. Fetina A.A. Impact of counterions on micelle formation and polymerization of 11-acryloyloxyundecyltrimethylammonium surfactants / A.A., Fetina, Fetin P.A.,

- Zorin I.M., Lezov A.A., Fetina V.I., Bilibin A.Yu. // J. Mol. Liq. 2020. V.309. P.113103.
- 102. Bilibin A.Yu. Polymerization of dodecylammonium 2-acrylamido-2methylpropane sulfonate in solvents with different dielectric constants and study of the resulting ionic complexes / A.Yu. Bilibin, T.M. Sukhanova, N.I. Matuschkin, A.B. Melnikov, I.M. Zorin // Macromol Symposia 2012. V. 317–318. P.160–168. https://doi.org/10.1002/masy.201100112
- 103. Zorin I.M. Polyelectrolyte-colloid complex formation via polymerization: reaction kinetics in direct micelles, inverted micelles, and homogeneous solution studied by NMR and conductometry / I.M. Zorin, ST.M. hcherbinina, E.I. Demidov, E.V. Mechtaeva, N.A. Zorina, P.A. Fetin, A.Yu. Bilibin // Colloid Polym. Sci. 2019. V. 297. P. 1169.
- 104. Morgan J.D. Kinetics and mechanism of microemulsion polymerization of hexyl methacrylate / J.D. Morgan, K.M. Lusvardi, E.W. Kaler // Macromolecules 1997 V.30 P.1897–1905
- 105. Hayakawa, K. The application of surfactant-selective electrodes to the study of surfactant adsorption in colloidal suspension / K. Hayakawa, A.L. Ayub, J.C.T. Kwak // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1982. Vol. 4. P. 389-396.
- 106. Hayakawa, K. Interactions between Polymers and Cationic Surfactants / K. Hayakawa, J.C.T. Kwak // Cationic Surfactants: Physical Chemistry / D.N. Rubingh, P.M. Holland // Marcel Dekker: New York, 1991. p.189-248.
- 107. Lindman, B. Thalberg K. Polymer-Surfactant Interactions Recent Developments / B. Lindman, K. Thalberg // Interaction of Surfactants with Polymer and Proteins. Eds: Goddard E.D., Ananthapadmanabhan K.P. // CRS Press, USA, 1993. p. 5-277.
- 108. Satake, I. Interaction of Sodium Decyl Sulfate with Poly(L-ornithine) and Poly(L-lysine) in Aqueous Solution / I. Satake, J.T. Yang // Biopolymers. 1976. V.15. P. 2263-2275.

- 109. Касаикин, В.А. Образование внутримолекулярной мицеллярной фазы как необходимое условие связывания амфифильных ионов противоположно заряженными полиэлектролитами. / В. А. Касаикин // ДАН. 1997. Т. 357, №4, с. 498-501.
- 110. Hayakawa, K. Study of surfactant-polyelectrolyte interactions. Binding of dodecyl- and tetradecyltrimethylammonium bromide by some carboxylic polyelectrolytes / K. Hayakawa, J.P. Santerre, J. Kwak // Macromolecules. − 1983. − V.16, № 10. − P. 1642-1645.
- 111. Ruso, J. M. The interaction between n-alkyl trimethylammonium bromides with poly(L-aspartate): a thermodynamics study / J. M. Ruso, F. Sarmiento // Colloid Polym. Sci. 2000. Vol. 278. P. 800 804.
- 112. Билалов, А.В. Переход клубок глобула в водных растворах кватернизованных производных 4 винилпиридина и ДДСа натрия / А. В. Билалов [и др.] // Высокомолекулярные соединения. Сер. А. 1996. Т. 38, № 1. С. 94 102.
- 113. Шилова, В. С. Полиэлектролитные комплексы кватернизованного поли 4 винилпиридина и додецилсульфата натрия в водно этанольных средах / В. С. Шилова [и др.] // Высокомолекулярные соединения. Сер. А. 2003. Т. 45, № 8. С. 1333 1339.
- 114. Hugerth, A. Effect of Polyelectrolyte Counterion Specificity on Dextran Sulfate Amphiphile Interaction in Water and Aqueous Organic Solvent Mixtures / A. Hugerth, L.O. Sundelöf // Langmuir. 2000. V. 16, № 11. P. 4940 4945.
- 115. Fukui, H. Thermodynamic Effects of Alcohol Additives on the Cooperative Binding of Sodium Dodecyl Sulfate to a Cationic Polymer / H. Fukui, I. Satake, K. Hayakawa // Langmuir. 2002. Vol. 18, № 11. P. 4465 4470.
- 116. Ranganathan, S. Effect of polymer Charge Density on the Phase Behavior of Sodium Poly(acrylate-co-acrilamide)-DTAB Systems / S. Ranganathan, J. Kwak // Langmuir. 1996. V.12, №5. p.1381-1390.
- 117. Хандурина Ю. В. Взаимодействие сетчатых полиэлектролитов с противоположно заряженными поверхностно-активными веществами / Ю. В.

- Хандурина, А. Т.Рогачева, А. Б. Зезин, В. А. Кабанов // Высокомолек. соед. Сер. А. 1994. Т. 36, № 2. С. 229-234.
- 118. Хандурина Ю. В. Структура поликомплесов, образованных сетчатым полиакриатом натрия и катионными мицеллобразующими поверхностно-активными веществами / Ю. В. Хандурина, А. Т. Дембо, В. Б. Рогачева, А. Б. Зезин, В. А. Кабанов // Высокомолек. соед. Сер. А. 1994. Т. 36, № 2. С. 235-240.
- 119. Хандурина Ю. В. Стабильность поликомплесов сетчатый полиэлектролит-поверхностно-активное вещество в водно-солевых и водно-органических средах / Ю. В. Хандурина, В. Б. Рогачева, А. Б. Зезин, В. А. Кабанов // Высокомолек. соед. Сер. А. 1994. Т. 36, № 2. С. 241-246.
- 120. Бобров А. Б. Структура и сорбционные свойства полимер-коллоидного комплекса, образованного катионами цетилпиридиния и полиакрилатанионами / А. Б Бобров [и др.] // Высокомолек. соед. Сер. А. 1997. Т. 39, № 4. С. 627-631.
- 121. Nanoparticles based on polyelectrolyte complexes: effect of structure and netcharge on the sorption capability for solved organic molecules / Buchammer H. M., Petxold G., Luswitz K. // Colloid Polym. Sci. 2000. Vol. 278. P.841-847.
- 122. Dye flocculation using polyampholytes and polyelectrolyte-surfactant nanoparticles / G. Petzold [et al] // Journal of Applied Polymer Science. -2007. V.104, No2. p.1342-1349.
- 123. Пат. РФ 2034794 Российская Федерация, МКП6 С02F1/56. Способ очистки сточных вод красильного производства/ В.А. Касаикин, Ю.А. Захарова, Т.К. Бронич, В.Г. Сергеев, А.Б. Зезин, В.А. Кабанов, Д.В. Новосельцева, Р.А. Мкртчян, М.М. Сулимов; заявители и патентообладатели В.А. Касаикин, Ю.А. Захарова, Т.К. Бронич, В.Г. Сергеев, А.Б. Зезин, В.А. Кабанов, Д.В. Новосельцева, Р.А. Мкртчян, М.М. Сулимов. № 5066103/26; заявл. 08.09.1992; опубл. 10.05.1995.
- 124. Interaction of cationic surfactant and anionic polyelectrolytes in mixed aqueous solutions / G. Petzold [et al] // Colloids and Surfaces A. -2008. V.319, No.1-3. -p.43-50.

- 125. Petzold, G. Dye removal with polyelectrolytes and polyelectrolyte—surfactant complexes / G. Petzold, S. Schwarz // Separation and Purification Technology. 2006. V.51, №3. p.318-324.
- 126. Пат. РФ 2324659 Российская Федерация, МКП С02F 1/56 С02F 103/32. Способ очистки технологических вод / И.А. Новаков, Ю.В. Шулевич, О.Ю. Ковалева, А.В. Навроцкий, В.А. Навроцкий; заявители и патентообладатели Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет. № 2007100761/15; заявл. 09.01.2007; опубл. 20.05.2008.
- 127. Mihai, M. Cationic polyelectrolytes anionic surfactant complexes used in the coagulation flocculation processes / M. Mihai, G. Dabija // U.P.B. Sci. Bull., Series B. 2008. V. 70, № 4. P. 29-36
- 128. Успехи химии Кабанов В.А. Полиэлектролиты в решении экологических проблем / Кабанов В.А. [и др.] // Успехи химии. 1991. Т. 60, № 3. С. 595 601.
- 129. Комаров С. М. Полиэлектролиты на службе мира и на тропе войны / С.
 М. Комаров // Химия и жизнь 2003. № 5. С.8-15.
- 130. Копейкин В.В., Афанакина Н.А. Влияние сополимера N-винилпирролидона с N,N,N,N триэтилметакрилоксиэтиламмоний йодидом и его комплексов с додецилсульфатом натрия на активность трипсина // Биоорган. химия. 1988. Т. 14. №6. С. 802-809
- 131. Пат. РФ 1172237 Российская Федерация, МКИ7 С08F220/34, С08F226/10, С08F8/00, А61К31/795. Водорастворимые комплексы катионных полиэлектролитов и анионных поверхностно-активных веществ, обладающие массо- и ростстимулирующей активностью в отношении животных / Ю.А. Уханев, В.Н. Конюхов, И.В. Маркова, М.В. Неженцев, В.В. Копейкин, Е.Ф.Панарин; заявитель и патентообладатель ГОУ ВПО «Самарская государственная архитектурно-строительная академия». №2001100648/15; заявл. 09.01.2001; опубл. 10.05.2004.

- 132. Пат. РФ 1381945 Российская Федерация, МКП6 С08F226/10, С08K3/24. Способ получения стимуляторов роста животных/ В.В. Копейкин, М.В. Неженцев, Е.Ф. Панарин, В.Н. Конюхов, И.В. Маркова, Ю.А. Уханев, А.Р. Данилов; заявители и патентообладатели Институт высокомолекулярных соединений АН СССР, Ленинградский педиатрический медицинский институт, Северо-Западное научнопроизводственное объединение по селекции и растениеводству "Белогорка" Нечерноземной РСФСР, Отделения ВАСХНИЛ ПО зоне Ленинградский сельскохозяйственный институт. - № 3982152/05; заявл. 26.11.1985; опубл. 30.04.1995.
- 133. Комплексы полиэлектролитов с электростатически комплементарными поверхностно-активными веществами / Ю.В. Шулевич [и др.] // Известия ВолгГТУ. -2005. T.2, №1. -c. 5-16.
- 134. Матричная полимеризация триметилметакрилоилоксиэтиламмоний метилсульфата в мицеллярных растворах додецилсульфата натрия / Ю.В. Шулевич, Ю.А. Захарова, П.М. Толстой, М.А. Вовк, Е.Г. Духанина, Д.С. Быков, А.В. Навроцкий, И.А. Новаков // Высокомолекулярные соединения. Серия Б Химия полимеров. 2019. Т. 61, № 6. С. 428-438.
- 135. Органическая химия [Электронный ресурс] : учебное пособие для вузов : в 3т. Т. III / В. Ф. Травень.—4-е изд. (эл.).— Электрон. текстовые дан. (1 файл pdf : 391 с.).—М. : БИНОМ. Лаборатория знаний, 2015.
- 136. Werber Jay R. Analysis of 2,2'-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions / Jay R. Werber, Y. John Wang Michael milligan, Xiaohua li, Junyan a. ji. // Journal of Pharmaceutical Sciences -2011 V. 100 $N_{\odot}8 P$. 3307-3315 2011.
- 137. Взаимодействие катионного мономера с додецилсульфатом натрия в концентрированных водных растворах: ЭПР-спектроскопия и ротационная вискозиметрия / Ю.В. Шулевич, М.В. Мотякин, Ю.А. Захарова, Е.Г. Духанина, А.М. Вассерман, А.В. Навроцкий, И.А. Новаков // Коллоидный журнал. 2015. Т. 77, № 1. С. 108-114.

- 138. Полимероподобные червеобразные мицеллы ионогенах поверхностно-активных веществ: структура и реологические свойства / А.Л. Квятковский, В.С. Молчанов, О.Е. Филиппова // Высокомолекулярныесоединения. Серия А Физика полимеров. 2019. Т. 61, № 2. С. 180-192.
- 139. Potarikina K.S. Vliyanie prirody protivoionov na predmicellyarnuyu i micellyarnuyu associaciyu dodecilsul'fa tov shchelochnyh metallov / K.S. Potarikina, G.P. Lepnev, O.G. Us'yarov // Vestnik SPbGU. 2012. Ser. 4, Vyp. 1. S. 90 95.
- 140. Bonilha Joao B.S. Exchange between alkylammonium and sodium ions at the surface of dodecylsulfate micelles / Joao B.S. Bonilha // Journal of Colloid and Interface Science. 1990. Vol. 135, № 1. P. 238-245.
- 141. Пат. SU 1061028 A СССР, МПК G01N27/02. Способ определения параметров водного раствора ионогенного поверхностно-активного вещества в точке Крафта / Гермашева И. И., Бочаров В. В., Вережников В. Н., Панаева С. А., Боголепова Л. Ф., Круть В. В., заявители и патентообладатели днепропетровский инженерно-строительный институт, предприятие пя а-1785. № 2987626; заявл. 10.03.1980; опубл. 12.15.1983.
- 142. Эскин, В. Е. Рассеяние света растворами полимеров / В. Е. Эскин. Москва: Наука, 1973. 352 с.
- 143. Kolthoff I.M. A new of buffer mixtures that can be prepared without the use of standardized acid or base / I.M. Kolthoff // J. Biol. Chem. -1925 V. 63 P. 135.
- 144. Kolthoff I.M., Vleeschhouwer J.J. Eine Vervollstandigung der Reihe Pufferlosungen im alkalischen Gebiet / I.M. Kolthoff, J.J. Vleeschhouwer // Biochemische Zeitschrift –1927 B. 189 S. 191.
- 145. Дестабилизация водных дисперсий катионными полиэлектролитами: монография / С.С. Дрябина, Ж.Н. Малышева, А.В. Навроцкий, И.А. Новаков; ВолгГТУ. Волгоград, 2020. 168 с.
- 146. Yang, Jen Tsi. An improvement in the graphic treatment of angular light scattering data / Jen Tsi Yang // Journal of Polymer Science. 1957. Vol. XXVI. P. 305-310.