Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный технический университет»

На правах рукописи

Доан Минь Кыонг

АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ МЕМБРАННЫХ АППАРАТОВ ДЛЯ ПРОЦЕССОВ УЛЬТРАФИЛЬТРАЦИИ И ОБРАТНОГО ОСМОСА С УЧЕТОМ СТРУКТУРЫ ПОТОКА ОЧИЩАЕМОГО РАСТВОРА

05.13.12 – Системы автоматизации проектирования (информационные технологии и промышленность) (технические науки)

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата технических наук

Научный руководитель: доктор технических наук, профессор Голованчиков Александр Борисович

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ5
Глава І. АНАЛИЗ СОВРЕМЕННЫХ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ
ПРОЦЕССОВ ОБРАТНОГО ОСМОСА И УЛЬТРАФИЛЬТРАЦИИ В
МЕМБРАННЫХ АППАРАТАХ
1.1 Влияние структуры потоков на физическое и математическое
моделирование технологических процессов
1.2 Модели, алгоритмы и программы, применяемые в настоящее время для
расчета мембранных процессов ультрафильтрации и обратного осмоса 15
1.3 Использование корреляционного анализа в алгоритмах и программах
при расчетах процессов и аппаратов ультрафильтрации и обратного осмоса 21
1.4 Устройство и принцип действия полупроницаемых мембран,
применяемых для ультрафильтрации и обратного осмоса
1.5 Анализ методов технического творчества, алгоритмизации и
проектирования мембранных процессов и аппаратов обратного осмоса и
ультрафильтрации
ВЫВОДЫ К ПЕРВОЙ ГЛАВЕ
Глава II. МЕТОДИКА КОМПЬЮТЕРНОЙ ПОДДЕРЖКИ ПРОЦЕССА
АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ МЕМБРАННЫХ
АППАРАТОВ
2.1 Алгоритм расчета процесса ультрафильтрации с учетом продольной
диффузии потока очищаемого раствора
2.2 Алгоритм расчета процесса ультрафильтрации в центробежном поле
50
2.3 Алгоритм для расчета обратноосмотического процесса с
диффузионной структурой потока по очищаемому раствору 60
2.4 Алгоритм для расчета процесса обратного осмоса в фильтрующих
сверхцентрифугах
2.5 Алгоритм для расчета обратноосмотического процесса в
фильтрующих сверхцентрифугах с учетом продольной диффузии

ВЫВОДЫ К ВТОРОЙ ГЛАВЕ
Глава III. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА
УЛЬТРАФИЛЬТРАЦИИ НА ПОЛУПРОНИЦАЕМОЙ МЕМБРАНЕ91
3.1 Описание экспериментальной лабораторной установки99
3.2 Методика проведения экспериментальных исследований 101
3.3 Методика построения тарировочного графика зависимости
оптической плотности раствора от относительной концентрации раствора 102
3.4 Обработка экспериментальных данных
3.5 Корреляционный анализ экспериментальных результатов 104
ВЫВОДЫ К ТРЕТЬЕЙ ГЛАВЕ107
Глава IV. ПЕРСПЕКТИВНЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ ДЛЯ
КОНЦЕНТРИРОВАНИЯ РАСТВОРОВ НА ПОЛУПРОНИЦАЕМЫХ
МЕМБРАНАХ В ЦЕНТРОБЕЖНОМ ПОЛЕ ЦЕНТРИФУГ109
4.1 Оценка возможности применения фильтрующих центрифуг в
мембранных процессах 109
4.2 Двухроторная маятниковая центрифуга110
4.3 Центробежный насос для ультрафильтрации
4.4 Ультрафильтрующая центрифуга с крутильными колебаниями 115
4.5 Вертикальная ультрафитрующая центрифуга с крутильными
колебаниями ротора118
4.6 Резонансная ультрафильтрующая центрифуга120
4.7 Ультрафильтрующая центрифуга с обеззараживанием раствора
электрическим током
4.8 Ультрафильтрующая центрифуга с обеззараживанием
ультрафиолетовым светом
ВЫВОДЫ К ЧЕТВЕРТОЙ ГЛАВЕ126
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ129
ПРИЛОЖЕНИЕ 1 СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

ПРИЛОЖЕНИЕ	2	AKT	ИСПОЛЬЗ	ВОВАНИЯ	МЕТОДИКИ	І РАСЧЕТА
МЕМБРАННЫХ	ПРОЦ	ECCOE	3			148
ПРИЛОЖЕНИЕ 3	3 АКТ	ВНЕДР	ЕНИЯ В У	чебный п	РОЦЕСС	149
ПРИЛОЖЕНИЕ	4	ПРО	ГРАММА	ДЛЯ	РАСЧЕТА	ПРОЦЕССА
УЛЬТРАФИЛЬТІ	РАЦИІ	и с учі	ЁТОМ ПРО	одольной	ДИФФУЗИИ.	150
ПРИЛОЖЕНИЕ	5 ПР	ОГРАМ	МА ДЛЯ	РАСЧЕТА	ПРОЦЕССА	ОБРАТНОГО
ОСМОСА С УЧЁ	TOM I	ПРОДО	льной ді	ИФФУЗИИ.	•••••	155
приложение (6 ПРО	ГРАММ	ИА ДЛЯ РА	АСЧЕТА ПА	APAMETPOB	линейного
УРАВНЕНИЯ М	ЕТОД	OM HA	ИМЕНЬШ	их отно	СИТЕЛЬНЫХ	КВАДРАТОВ
		•••••	•••••		•••••	162
приложение 7	7 ПРО	ГРАММ	ІА ДЛЯ РА	СЧЕТА КРІ	ИТЕРИЕВ	164
РЕГРЕССИОННО	ΟΓΟ Α	НАЛИЗ	BA B OTCY	ТСТВИИ Г	ІАРАЛЛЕЛЬН	ых опытов
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			164

ВВЕДЕНИЕ

Актульность темы исследования. Учение о физическом и математическом моделировании процессов обратного осмоса и ультрафильтрации начало развиваться с середины XX века одновременно с развитием компьютерных технологий и созданием ЭВМ [11].

Сначала оно сдерживалось из-за отсутствия синтетических полимерных материалов, являющихся основой создания полупроницаемых перегородок, и самой теории разделения жидких и газообразных смесей на молекулярном и ионном уровнях. Поэтому первые мембраны были естественного происхождения (кожа, печень и почки животных), которые были недолговечны и малопрочные, а также имели небольшую поверхность. И только после создания синтетических полимеров и технологии получения из них основе тонких пленок, толщиной до 100мк активным полупроницаемым подслоем толщиной 10÷30мк удалось создать надежные экспериментальные и промышленные установки для разделения растворов и газов на молекулярном и ионном уровнях. После развития теории мембранного разделения стали создаваться алгоритмы и программы для расчетов вышеназванных процессов разделения, названных ультрафильтрацией в процессах отделения так называемых «больших» молекул от мелких, размеры которых меньше размеров пор в мембране, в растворах и смесях газов и обратным осмосом ионов растворенного вещества от селективного отделения молекул растворителя [14].

Научная актуальность обусловлена необходимостью создания математического и программно-методического обеспечения САПР, позволяющего проектировать новые и совершенствовать конструкции действующих мембранных аппаратов, применяемых в процессах ультрафильтрации и обратного осмоса.

Мембранная технология является перспективной практически для всех отраслей народного хозяйства, в которых возникает необходимость разделения, очистки и концентрирования растворов органических или минеральных веществ на уровне молекул или ионов [16]. Множество вариантов конструкций мембранных

аппаратов, обусловленное многообразием процессов разделения растворов (в том числе процессы ультрафильтрации и обратного осмоса), требует применения современных средств вычислительной техники для поиска и принятия оптимальных проектных решений, реализуемых системой автоматизированного проектирования. Совершенствование процессов проектирования на основе моделирования процессов ультрафильтрации и обратного осмоса в мембранных аппаратах, автоматизации необходимых расчетов позволяет оптимизировать выбор параметров конструкции мембранных аппаратов и технологических режимов их функционирования, что имеет существенную практическую ценность.

Выбор оптимального проектного решения мембранных аппаратов связан с расчетов площади поверхности мембраны, обеспечивающей проведением необходимую степень очистки фильтрата, концентраций очищающего компонента в пермеате и ретанте [74]. В настоящий момент стандартные проектные процедуры процессов обратного осмоса и ультрафильтрации основаны на режимах идеального вытеснения и смешения очищаемому раствору, ПО движущемуся над полупроницаемой мембраной, что приводит к снижению точности при проектировании конструкций мембранных аппаратов в реальных условиях. Так, переход от модели идеального вытеснения к идеальному смешению может привести к увеличению расчетной поверхности мембраны до 50%, а степени очистки пермеата (фильтрата) в 3,8 раза. Кроме того, существующие методики расчета используют избыточное давление, создаваемое над мембраной от 4 до 60 атм. специальными насосами, без создания центробежного давления внутри аппарата.

Поэтому актуальным является разработка программно-методического комплекса расчетов, учитывающих реальную структуру потоков очищаемого раствора и повышающих точность расчетов и проектирования мембранных аппаратов, как обычных мембранных аппаратов, работающих под давлением, так и работающих как фильтрующие центрифуги в центробежном поле.

Степень разработанности темы исследования.

За рубежом алгоритмы и программы для расчетов процессов ультрафильтрации и братного осмоса в мембранных аппаратах разрабатывались и разрабатываются фирмами (Assyst, Zeuze (Германия); Toray Industies (Японния), CDI Microdynaic, GGT, Gameo (США); Lectra Systems, Pantotus (Франция); Investronica Sismemas (Испания); AMF Reese (Великобритания); GIG Mobil (Бельгия) [33].

В России учение о мембранных процессов получило развитие в МХТУ им. Менделеева (школа проф. Ю.И. Дытнерского), ряде других Московских вузах, в институтах АН СССР и России: «Программа автоматизации системы измерения мембранной установки Alfa Laval LabUnit M20» разработана в «Национальном исследовательском Мордовском государственном университете им. Н.П. Огарёва; «Расчет продолжительности работы мембранной установки на основе аппаратов с отводом поляризационного слоя» разработанной в Кемеровском государственном университете; «Программный комплекс для расчета технологических параметров электроультрафильтрационной установки трубчатым разделительным Тамбовском разработанной элементом» В государственном техническом университете»; «Моделирование влияния диссоциации воды на электроконвекцию мембранных системах» разработанной В Кубанском государственном университете [13].

Однако в этих работах все описанные и проанализированные алгоритмы и программы для ультрафильтрационного процесса разделения растворов и газов основаны на модели идеального вытеснения или идеального смешения. Это значительно упрощает экспериментальные данные, в которых учитываются и определяются физические параметры полупроницаемых мембран: селективность, удельную производительность, средний размер пор, зависимость гидравлического сопротивление от давления и температуры, возможности регенерации и длительности эксплуатации различных известных и новых мембран.

Цель работы. Повышение точности расчета технологических параметров при автоматизированном проектировании конструкций мембранных аппаратов

обратного осмоса и ультрафильтрации за счет учета продольной диффузии, в том числе работающих в центробежном поле.

Задачи исследования.

- 1. Модернизация существующих методов расчета, моделей, алгоритмов и программ мембранного разделения в процессах обратного осмоса и ультрафильтрации, учитывающих неидеальность структуры потоков в капиллярах и плоских каналах полупроницаемых мембран и обеспечивающих повышение точности расчетов поверхности мембран и степени очистки пермеата.
- 2. Совершенствование метода корреляционного анализа при аппроксимации экспериментальных и табличных данных линеаризированным уравнением при проверке воспроизводимости, адекватности и значимости коэффициентов этого уравнения, повышающего точность расчетов по средним и наибольшим относительным отклонениям теоретических от экспериментальных или табличных данных и снижающего время проведения экспериментов.
- 3. Создание новых конструкций мембранных аппаратов, нейтрализующих, уменьшающих или подавляющих концентрационную поляризацию с комплексным использованием (то есть одновременно двух или нескольких) известных физических эффектов и методов инженерного творчества, а также использующих центробежное давление для создание движущей силы в мембранных процессах.

Область исследования. Разработка и исследование моделей, алгоритмов и методов синтеза и анализа проектных решений, включая конструкторские и технологические решения в САПР.

Объект исследования. Диффузионная модель структуры потока в мембранных аппаратах ультрафильтрации и обратного осмоса.

Предмет исследования. Методы автоматизации проектирования мембранных промышленных аппаратов с диффузионной моделью структуры потоков, в том числе работающих в центробежном поле на базе физического и математического моделирования.

Гипотеза исследования. Влияние продольной диффузии на геометрические и технологические параметры мембранных аппаратов, работающих под избыточным давлением и в центробежном поле.

Методология и методы исследования. При выполнении исследований и решения поставленных задач использовались методы математического моделирования, эвристические методы анализа и синтеза задач, методы решения изобретательских задач и методы применения физических эффектов и явлений.

Научная новизна.

- 1. Разработана методика компьютерной поддержки процесса автоматизированного проектирования мембранных аппаратов для процессов обратного осмоса и ультрафильтрации, отличающаяся тем, что при моделировании этих процессов учитывается продольная диффузия потока очищаемого раствора, что позволяет увеличить точность расчета технологических и геометрических параметров при автоматизированном проектировании мембранных аппаратов: поверхности мембран на 12%, а степени очистки пермеата (фильтрата) в 2,68 раза.
- 2. Разработан метод расчета коэффициентов линеаризированного уравнения по экспериментальной зависимости выходных значений функций от входных значений аргумента, отличающийся тем, что минимизируется не сумма квадратов отклонения (МНК), а сумма квадратов относительных отклонений теоретических значений функции от ее экспериментальных значений (МНОК). Это позволяет увеличить точность описания математического моделирования для применения в САПР, при этом средние относительные отклонения снижают с 4,9% до 1,9%, а наибольшие с 10% до 3%.
- 3. Разработан метод расчета критериев регрессионного анализа линеаризированного уравнения по экспериментальной зависимости выходных значений функции от входных значений аргумента в отсутствии параллельных опытов, отличающийся тем, что при интерполяции используется метод линейной кусочной аппроксимации (геометрическое подобие треугольника со сторонами равными разности значений i-1, i, i+1 по аргументу) для расчета условных значений функции в параллельных опытах. Это позволяет обрабатывать заданные

табличные зависимости выходных параметров как функции входных методами корреляционного анализа, что уменьшает время обработки данных на 35% и позволяет сократить срок создания систем автоматизации проектирования и автоматизации технологической подготовки производства.

Теоретическая значимость работы. На основе неоднородных дифференциальных уравнений материального баланса разработана математическая модель процессов ульрафильтрации и обратного осмоса в мембранных типовых аппаратах и фильтрующих центрифугах, учитывающая продольную диффузию.

Практическая значимость.

- 1. На основе применения методов инженерного творчества и известных физических эффектов разработаны и запатентованы варианты 6 конструкций мембранных центрифуг, на роторе которых возможно закреплена полупроницаемая мембрана, позволяющие совмещать процессы фильтрации, обратного осмоса и ультрафильтрации, вибрации и резонанса, обеззараживания и регенерации микропор, что нивелирует концентрационную поляризацию и способствует интенсификации процессов очистки многокомпонентных систем от дисперсной фазы и «больших» молекул и ионов.
- 2. Реализованные в автоматизированной системе модели, методы и алгоритмы создают условия для повышения научно-технологического уровня проектов за счет точности моделирования с учетом продольной диффузии.

Достоверность результатов - достоверность опирается на совпадение собственных теоретических и экспериментальных данных, совпадение с опубликованными научными литературными результатами других авторов и результаты исследований, изложенные в статьях, тезисах и на научных конференциях.

Реализация и внедрение результатов работы. По результатам работы получен акт внедрения в учебном процессе ВолгГТУ и акт использования в научно-промышленном объединении ООО «НПО «ОРТЕХ-ЖКХ». Полученные результаты нашли применение в научно-исследовательских работах кафедры

«Процессы и аппараты химических и пищевых производств» по теме № 28.138 «Теоретические основы совмещенных гидродинамических и тепломассообменных процессов», Гранте Президента РФ № МК-1287.2020.8 и Гранте РФФИ № 18-07-01086 кафедры «Системы автоматизированного проектирования и поискового конструирования».

Апробация работы. Основные положения диссертационной работы были представлены на следующих конференциях: XXII Региональная конференция молодых учёных Волгоградской области (г. Волгоград, 21-24 ноября 2017 г.), V всероссийская студенческая научно-техническая конференция «Интенсификация тепло-массообменных процессов, промышленная безопасность и экология», посвящ. 90-летию со дня рожд. Поникарова Ивана Ильича (г. Казань. Респ. Татарстан, 23-25 мая 2018 г.), VII всероссийская конференция с международным участием (г. Чебоксары, 19-20 апреля 2018 г.), XV межрегиональная научно-практическая конференция, посвящ. 65-летию города Волжского (г. Волжский, 15-16 мая 2019 г.), XII всероссийская научно-практическая конференция студентов, аспирантов и молодых учёных с международным участием (г. Бийск, 22-24 мая 2019 г.), XXIV Региональная конференция молодых учёных и исследователей Волгоградской области (г. Волгоград, 3-6 декабря 2019 г.), IV международная научно-практическая конференция, посвящ. памяти акад. Анатолия Ивановича Булатова (г. Краснодар, 31 марта 2020 г.).

Публикация. По материалам исследований опубликовано 20 научных работ, в том числе 1 статья в журнале, индексируемом в базе научного цитирования Scopus, 1 монография, 5 статьей в журналах, рекомендованных ВАК, 3 статьи в научно-технических журналах, 6 патентов на полезные модели конструкций фильтрующих центрифуг и 4 свидетельства о регистрации программы для ЭВМ.

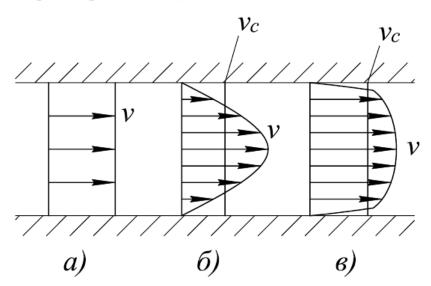
Соответствие паспорту научной специальности. Область диссертационного исследования соответствует паспорту специальности 05.13.12 — «Системы автоматизации проектирования (информационные технологии и промышленность)» по пунктам 3 — «Разработка научных основ построения средств САПР, разработка и исследование моделей, алгоритмов и методов для синтеза и

анализа проектных решений, включая конструкторские и технологические решения в САПР и АСТПП», 4 — «Разработка принципиально новых методов и средств взаимодействия проектировщик — система» и частично по пункту 1 — «Методология автоматизированного проектирования в технике, включая постановку, формализацию и типизацию проектных процедур и процессов проектирования, вопросы выбора методов и средств для применения в САПР».

Положения, выносимые на защиту.

- 1. Методика компьютерной поддержки процесса автоматизированного проектирования мембранных аппаратов для процессов обратного осмоса и ультрафильтрации с учетом продольной диффузии при избыточном давлении над мембраной и в центробежном поле.
- 2. Метод расчета коэффициентов линеаризированного уравнения по экспериментальной зависимости выходных значений функций от входных значений аргумента методом наименьших относительных квадратов.
- 3. Метод расчета критериев регрессионного анализа для линеаризированного уравнения по экспериментальной зависимости выходных значений функции от входных значений аргумента в отсутствии параллельных опытов.
- 4. Технические решения, полученные на основе современных методов концептуального проектирования.

Объем и структура работы. Диссертационная работа состоит из введения, четырех глав, общих выводов, списка использованной литературы и 7 приложений. Работа изложена на 166 страницах, содержит 37 рисунков, 14 таблиц, библиографию из 124 наименования.


Глава I. АНАЛИЗ СОВРЕМЕННЫХ ПРОБЛЕМ ПРОЕКТИРОВАНИЯ ПРОЦЕССОВ ОБРАТНОГО ОСМОСА И УЛЬТРАФИЛЬТРАЦИИ В МЕМБРАННЫХ АППАРАТАХ

1.1 Влияние структуры потоков на физическое и математическое моделирование технологических процессов

1.1.1 Понятие структуры потока и ее основные модели

Структурой потока называется распределение молекул и частиц по времени их пребывания в объекте [1]. Различают два крайних идеальных случая их распределения по времени пребывания (РВП): идеальное вытеснение и идеальное смешение.

Структура потока идеального вытеснения представлена на рисунке 1*а*. Все молекулы и частицы движутся с одинаковой скоростью равной средней, соответственно и время пребывания у всех частиц одинаковое.

а) идеальное вытеснение; б) ламинарный поток; в) турбулентный Рисунок 1.1 – Профили скорости в объекте [1]

Структура потока идеального перемешивания предполагает мгновенное равномерное выравнивание молекул или частиц, поступающих в объект по всему его объему.

Обе описанные идеальные структуры в реальности невозможны. Вихри, застойные зоны повороты, сужения и расширения и другие так называемые местные сопротивления, молекулярная и конвективная диффузия приводят к значительным отклонениям реальных потоков от вышеназванных моделей идеального вытеснения и смешения [3].

1.1.2 Комбинированные модели структуры потока

В массообменных аппаратах (абсорберах, ректификационных колоннах, адсорберах, ионообменных аппаратах, сушилках, экстракторах) и химических реакторах неидеальность структуры потока учитывается комбинацией вышеназванных моделей: последовательным и параллельным соединением звеньев идеального вытеснения и смешения, ячеечной моделью с параллельным соединением звеньев идеального смешения одинакового и неодинакового объема, соединением с зонами байпаса и застойными зонами и т.п [1].

1.1.3 Диффузионная модель структуры потока

Однако наиболее точно, но и более сложно описывается реальная структура потока диффузионной моделью или моделью с обратным перемешиванием [1]. В основе этой модели лежит модель идеального вытеснения:

$$v_c \frac{dC}{dz} + D_l \frac{d^2C}{dz^2} = 0. {(1.1)}$$

При коэффициент продольной диффузии $D_l \to 0$ уравнение (1.1) переходит в дифференциальное уравнение структуры потока идеального вытеснения, а так как средняя скорость $v_c = \text{const}$, то и C = const, то есть концентрация по любому компоненту не меняется и остается постоянной от входа к выходу [1].

Сложность дифференциального уравнения (1.1), описывающего диффузионную модель, связана не только с тем, что оно описывается дифференциальным уравнением II порядка по сравнению с дифференциальным уравнением первого порядка для идеального вытеснения или алгебраическим уравнением для идеального смешения, но и с тем, что оно имеет сложное граничное условие на входе:

$$x = 0, C_0 = C_{_H} - \frac{1}{Pe} \left(\frac{dC}{dz} \right)_0,$$
 (1.2)

где C_0 и $C_{\scriptscriptstyle H}$ — соответственно концентрации молекул перед объектом и на входе внутри его;

$$Pe = \frac{v_c \cdot l}{D_l}$$
 - число Пекле продольной диффузии;

l – длина объекта.

Обычно дифференциальное уравнение диффузионной модели не имеет аналитического решения и возможно только его численное решение на ЭВМ с учетом сложного граничного условия (1.2). Поэтому его стали использовать в алгоритмах и программах после развития компьютерной техники при расчетах вышеназванных тепло- и массообменных процессов и химических реакторов [2-5].

1.2 Модели, алгоритмы и программы, применяемые в настоящее время для расчета мембранных процессов ультрафильтрации и обратного осмоса

1.2.1 Модели структуры потока и соответствующие им алгоритмы и программы для процесса ультрафильтрации

В настоящее время все описанные и проанализированные алгоритмы и программы для ультрафильтрационного процесса разделения растворов и газов основаны на модели идеального вытеснения. В малых лабораторных установках, где для снижения эффекта концентрационной поляризации используют механических мешалки, расчеты ведут по алгоритму и программе на базе

структуры потока идеального смешения, что позволяет считать концентрации молекул по объему аппарата над мембраной постоянными. Это значительно упрощает экспериментальные данные, в которых учитываются и определяются физические параметры полупроницаемых мембран: селективность, удельную производительность, средний размер пор, зависимость гидравлического сопротивление от давления и температуры, возможности регенерации и длительности эксплуатации различных известных и новых мембран. Это в основном мембраны листового типа малой площади и производительности [114].

В промышленных установках используют ультрафильтрационные мембраны трубчатого, капиллярного и рулонного типа.

Схема рассматриваемого процесса ультрафильтрации со структурой потока идеального смешения на полупроницаемой мембраны приведена на рисунке 1.2.

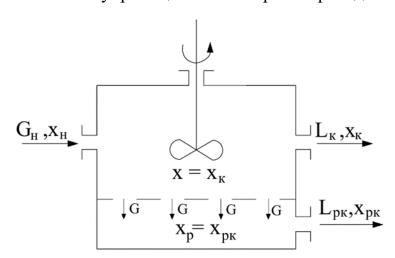


Рисунок 1.2 – Схема ультрафильтрационного процесса при идеальном смешении очищаемого раствора

Материальные балансы по потокам и концентрациям молекул растворенного вещества могут быть записаны в виде:

$$G_{H} = L_{K} + L_{PK}; (1.3)$$

$$G_{H}X_{H} = L_{K}X_{K} + L_{PK}X_{PK}. {1.4}$$

Так как концентрация в пермеате связана с концентрацией в реанта [1-4]

$$x_{p} = (1 - \varphi)x, \tag{1.5}$$

а концентрация в ретанте $x = x_{\kappa}$ постоянна, то

$$x_{PK} = (1 - \varphi)x_{K}. \tag{1.6}$$

Решение уравнений (1.3) и (1.4) относительно неизвестных $L_{_K}$ и $L_{_{PK}}$ с учетом уравнения (1.5) имеют вид:

$$L_{PK} = \frac{G_H(x_K - x_H)}{\varphi \cdot x_K}; \tag{1.7}$$

$$L_{K} = G_{H} - L_{PK} \,. \tag{1.8}$$

Необходимая площадь поверхности ультрафильрационной мембраны определяется по формуле:

$$F_{M} = \frac{L_{PK}}{G} \quad . \tag{1.9}$$

Недостатком известных алгоритмов в том числе и приведенного на рисунке 1.2 является неучет реальности структуры потока, которая может значительно отличаться от структуры потока идеального смешения, лежащей в основе известных типовых программ.

1.2.2 Модели структуры потока и соответствующие им алгоритмы и программы для обратноосмотического процесса

Как и для ультрафильтрационного процесса алгоритмы и программы, описывающие промышленные процессы обратного осмоса, основаны на структуре потока идеального вытеснения. Здесь такие используют выпускаемые мембраны капиллярного (трубчатые) и рулонного типа, и только в лабораторных исследованиях или при получении особо чистых веществ в малой массе или объеме (фармакология, биотехнология, полупроводники для электронной техники) используют пластинчатые мембраны. По сравнению с ультрафильтрационными процессами, идущими при избыточных давлениях 1,5÷4 *атм.*, рабочее давление

над обратноосмотическими мембранами достигает 60 *атм*. и требует установки специальных насосов высокого давления [112].

Типовой алгоритм расчета обратноосмотического процесса на полупроницаемом мембране представлен на рисунке 1.3.

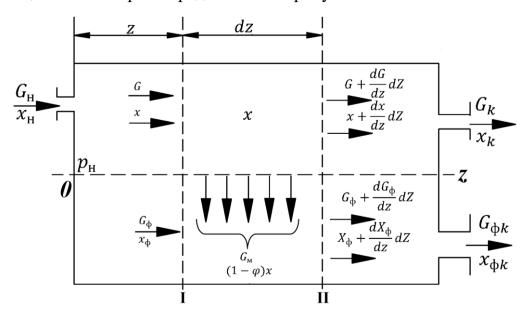


Рисунок 1.3 – Схема процесса обратного осмоса при идеальном вытеснении очищаемого раствора

$$G = (G + \frac{dG}{dz}dz) + G_{\scriptscriptstyle M}bdz;$$

$$G \cdot x = (G + \frac{dG}{dz}dz)(x + \frac{dx}{dz}dz) + G_{\scriptscriptstyle M}x(1 - \varphi)bdz;$$

$$G_{\phi}x_{\phi} + G_{\scriptscriptstyle M}b(1 - \varphi)xdz = (G_{\phi} + \frac{dG_{\phi}}{dz}dz)(x_{\phi} + \frac{dx_{\phi}}{dz}dz).$$

$$(1.10)$$

Первое уравнение системы (1.10) характеризует элементарный материальный баланс по раствору, второе по молекулам и ионам растворенного вещества в растворе, третье - по молекулам и ионам растворенного вещества в фильтрате.

После алгебраических преобразований получаем систему дифференциальных уравнений:

$$\begin{cases} \frac{dG}{dz} = -G_{M}b \\ x\frac{dG}{dz} + G\frac{dx}{dz} + G_{M}b(1-\varphi)x = 0; \\ G_{M}b(1-\varphi)x = x_{\Phi}\frac{dG_{\Phi}}{dz} + G_{\Phi}\frac{dx_{\Phi}}{dz}. \end{cases}$$

$$(1.11)$$

Решение первого уравнения системы (1.11) с учетом граничного условия: $z=0,\,G=G_{\scriptscriptstyle H}$ имеет вид уравнения:

$$G = G_{\scriptscriptstyle H} - G_{\scriptscriptstyle M} bz \,. \tag{1.12}$$

Тогда второе уравнение системы (1.11) с учетом уравнения (1.10) этой же системы и уравнения (1.12) принимает вид уравнения:

$$(G_{\scriptscriptstyle H} - G_{\scriptscriptstyle M} bz) \frac{dx}{dz} - G_{\scriptscriptstyle M} b\varphi x = 0. \tag{1.13}$$

Введем безразмерную длину $Z = \frac{z}{l}$, где l - длина мембраны и разделим правую и левую часть выражения (1.13) на G_{H} , то после алгебраических преобразований получаем дифференциальные уравнения в виде:

$$\left[1 - \left(\frac{G_{\phi\kappa}}{G_{\scriptscriptstyle H}}\right)z\right] \frac{dx}{dZ} - \left(\frac{G_{\phi\kappa}}{G_{\scriptscriptstyle H}}\right)\varphi x = 0, \tag{1.14}$$

где
$$G_{\phi\kappa}=G_{_{\!M}}bl$$
 , а $G_{_{\!H}}=G_{_{\!K}}-G_{\phi\kappa}$.

После интегрирования с граничным условием z=0, $x=x_{H}$ получаем зависимость концентрации молекул ионов в растворе над мембранной от безразмерной координаты z:

$$x = \frac{x_{H}}{\left(1 - \frac{G_{\phi\kappa}}{G_{H}}Z\right)^{\varphi}}.$$
(1.15)

При z=1 получаем известное уравнение для расчета производительности по фильтрату на выходе из аппарата:

$$G_{\phi\kappa} = G_{\scriptscriptstyle H} \left[1 - \left(\frac{\chi_{\scriptscriptstyle H}}{\chi_{\scriptscriptstyle K}} \right)^{1/\varphi} \right], \tag{1.16}$$

с учетом, которого несложно рассчитать необходимую поверхность мембраны при идеальном вытеснении концентрированного раствора:

$$F = \frac{G_{\phi\kappa}}{G_{_{M}}} \tag{1.17}$$

и производительность по концентрированному раствору с учетом формулы (3): при Z=1:

$$G_{\kappa} = G_{\mu} - G_{d\kappa}. \tag{1.18}$$

Изменение концентрации молекул и ионов в фильтрате по длине z можно рассчитать по уравнению материального баланса:

$$x_{\phi} = \frac{\int_{0}^{Z} (1 - \varphi) x b G_{M} dZ}{\int_{0}^{Z} b G_{M} dZ} , \qquad (1.19)$$

где в числителе массовый расход молекул и ионов - в фильтрате, в знаменателе - масса фильтрата.

С учетом уравнения (1.15) последняя формула имеет аналитическое решение:

$$x_{\phi} = \frac{x_{H} \left(\frac{G_{H}}{G_{\phi K}}\right) \left[1 - \left(1 - \frac{G_{\phi K}}{G_{H}}Z\right)^{-\varphi}\right]}{Z}, \tag{1.20}$$

которое при Z=1 приводит к значению концентрации молекул и ионов в фильтрате на выходе из аппарата.

Последнее значение можно получить также из интегрального уравнения материального баланса:

$$x_{\phi\kappa} = \frac{G_{\kappa} x_{\kappa} - G_{\kappa} x_{\kappa}}{\left(G_{\kappa} - G_{\kappa}\right)}.$$
 (1.21)

Недостатком известных типовых алгоритмов расчета обратноосмотического процесса и размеров аппарата, как и в вышеописанном

алгоритме расчета мембранного процесса аппарата для ультрафильтрации (рисунок 1.2), является неучет реальной структуры потока, связанной с турбулизацией, диффузией и непостоянством профиля скорости по сечению трубки, капилляра или плоского канала рулона.

1.3 Использование корреляционного анализа в алгоритмах и программах при расчетах процессов и аппаратов ультрафильтрации и обратного осмоса

1.3.1 Аппроксимация экспериментальных данных и табличных зависимостей методом наименьших квадратов (МНК)

В корреляционном анализе любых процессов, в том числе при расчетах процессов ультрафильтрации и обратного осмоса широко используется МНК [10].

Расчет коэффициентов линейного уравнения регрессии, которым исследователь пытается подобрать более точную математическую модель, основан в этом методе на минимизации функции [9]:

$$U = \sum_{i=1}^{n} (y_{t(i)} - y_{(i)})^{2} \to \min.$$
 (1.22)

Однако при оценке точности аппроксимации сравниваются локальные относительные отклонения теоретических значений $y_{t(i)}$ от экспериментальных или табличных $y_{(i)}$:

$$\delta_i, \% = \frac{y_{t(i)} - y_i}{y_i} \cdot 100, \tag{1.23}$$

и по наибольшему значению $|\delta_{\max}|$, и по среднему:

$$\left| \delta_{cp} \right| = \sum_{i=1}^{n} \frac{\left| \delta_i \right|}{n}, \tag{1.24}$$

судят о точности аппроксимации и выбирают наиболее удачную, в которой $\left| \delta_{\text{max}} \right|$ и $\left| \delta_{cp} \right|$ имеют наименьшие значения.

Это противоречие уравнений (1.22) и (1.23) можно избежать, используя метод наименьших относительных квадратов (МНОК), в котором минимизируется функция наименьших относительных квадратов отклонения теоретических значений линеаризированного аппроксимирующего уравнения от экспериментальных.

$$U = \sum_{i=1}^{n} \left[\left(Y_{t(i)} - y_{(i)} \right) / y_{(i)} \right]^{2} \to \min.$$
 (1.25)

В этом случае происходит как бы синхронизация локальных относительных отклонений с их минимизацией по уравнению (1.25) и локальных отклонений по уравнению (1.23).

Особенно целесообразно применять МНОК, когда линеаризированные значения функции $y_{(i)}$ отличаются на порядок и большие. Покажем это, используя две крайние точки линеаризированных экспериментальных или табличных данных. Допустим известны координаты двух крайних точек из 10.

$$\begin{cases} npu \ x_1: \ y_{t1} = 2; \ y_1 = 1; \\ npu \ x_2: \ y_{t10} = 9; \ y_{10} = 10. \end{cases}$$

По величине квадраты отклонений в МНК для обеих точек равноценны и равны 1, хотя относительные отклонения по абсолютной величине различны:

для
$$x_I$$
: $\left| \mathcal{S}_{y_1}, \% \right| = \left| \frac{2-1}{1} \right| \cdot 100 = 100\%;$

для
$$x_{10}$$
: $\left| \delta_{y10}, \% \right| = \left| \frac{9-10}{10} \right| \cdot 100 = 10\%$.

То есть при выравнивании локальных значений абсолютных отклонений относительные отклонения отличаются в 10 раз.

МНОК при расчете коэффициентов a и b линеаризированного уравнения с учетом формулы (1.25) будет опускать точку y_{tl} и поднимать точку y_{tl0} . Например (рисунок 1.4):

$$\begin{cases} npu \ x_1: \ Y_{t1} = 0.9; \ y_1 = 1; \\ npu \ x_2: \ Y_{t10} = 11; \ y_{10} = 10. \end{cases}$$

В этом случае относительные отклонения по абсолютной величине становятся равными:

$$|\delta_{y_{t1}}| = |\delta_{y_{t10}}| = 10\%$$
,

и вполне могут быть использованы в дальнейших шагах корреляционного анализа с определением адекватности модели экспериментальным или табличным данным и значимости ее коэффициентов.

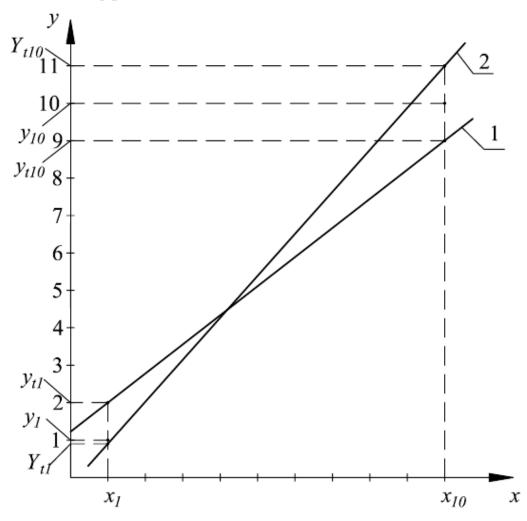


Рисунок 1.4 — Фрагмент сравнения точности аппроксимации линеаризированного уравнения МНК (1) и МНОК (2) по координатам крайних точек в заданной и рассчитанной зависимости

Но расчет дисперсии адекватности в типовом МНК по формуле:

$$S_{a\partial}^2 = \frac{m}{n-l} \sum_{i=1}^{n} \left[y_{t(i)} - y_{(i)} \right]^2$$

необходимо заменить на формулу для МНОК:

$$S_{a\partial}^2 = \frac{m}{n-l} \sum_{i=1}^n \left[\frac{Y_{t(i)} - y_{(i)}}{y_{(i)}} \right]^2,$$

так как минимизируется в МНОК сумма квадратов относительных отклонений теоретических значений функции от ее средних экспериментальных значений в каждой i-ой точке.

Для примера в таблице 1.1 приведены результаты сравнительных расчетов МНК и МНОК, аппроксимирующих экспериментальные данные трех опытов линейным уравнением:

$$y = b + a \cdot x, \tag{1.26}$$

Таблица 1.1 – Результаты расчетов МНК и МНОК обработки экспериментальных данных трех опытов уравнением (1.26)

№	Наименование параметра	Величина		
1	Значения аргумента	2	3,5	5
2	Значения функции	1,0	5,8	10
3	Теоретические значение функции, рассчитанные МНК	1,1	5,6	10,1
4	Теоретические значения функции, рассчитанные МНОК	1,0025	5,63	10,25
5	Относительные отклонения теоретических значений от экспериментальных в МНК, %	10	-3,45	1,0
6	Относительные отклонения теоретических значений от экспериментальных в МНОК, %	0,25	-2,95	2,55

Средние значения по абсолютной величине относительных отклонений теоретических значений функции от экспериментальных (или табличных):

$$|\delta, MHK| = 4.81\%;$$

 $|\delta, MHOK| = 1.92\%.$

Как видно из приведенного примера сравнительных расчетов МНК и МНОК наибольшие относительные отклонения теоретических значений функции от экспериментальных для МНК составляют 10%, а для МНОК по абсолютной

величине менее 3%, то есть наибольшие относительные отклонения МНОК уменьшает в 3,4 раза, а средние — в 2,5 раза по сравнению с МНК, причем наибольшие относительные отклонения МНК создает при малых значений функции, хотя абсолютные отклонения практически равноценны на всем интервале изменения ее числовых значений.

В уравнении (1.26):

для МНК: a = 3.0; b = -4.9;

для МНОК: a = 3,08; b = -5,17.

1.3.2 Проверка адекватности математической модели экспериментальным данным в отсутствии параллельных опытов

Другой проблемой корреляционного анализа, особенно связанной со сложностью проведения параллельных опытов или наличием только табличной зависимости выходных параметров от входных, является невозможность проверки воспроизводимости в параллельных опытах, требующих усреднения выходных параметров, сравнения квадратов локальных отклонений этих параметров в параллельных опытах от средних значений для каждого локального входного параметра с определением наибольшего значения этого отклонения и расчетов ошибки опыта, используемой в дальнейшем при оценке адекватности математической модели путем сравнения квадратов отклонений теоретических значений выходных величин от средних экспериментальных с рассчитанным значением ошибки опыта.

Эта проблема часто возникает, когда сравниваются результаты табличных или экспериментальных значений функций от аргументов разных авторов или библиографических данных с массивом неодинаковых значений входных параметров и приведением их и соответствующих им выходных параметров к массиву с одинаковыми входными параметрами [11].

Для процессов ультрафильтрации и обратного осмоса такая необходимость возникает при подстановке в алгоритмы и программы расчетов значений плотности

и вязкости разделяемых растворов как функций концентрации извлекаемых молекул или ионов. Тоже касается функций селективности мембран, осмотического давления и оптической плотности растворов в колориметрических исследованиях с использованием фотоколориметра.

Поэтому разработка метода определения оценки воспроизводимости при сравнении расчетного значения числа Кохрена с его табличным значением, ошибки опыта и оценки адекватности математической модели экспериментальным или табличным значениям с сравнением расчетного числа Фишера с табличным его значением в отсутствии параллельных опытов является актуальной прикладной задачей при создании алгоритмов и программ расчетов мембранных процессов.

1.4 Устройство и принцип действия полупроницаемых мембран, применяемых для ультрафильтрации и обратного осмоса

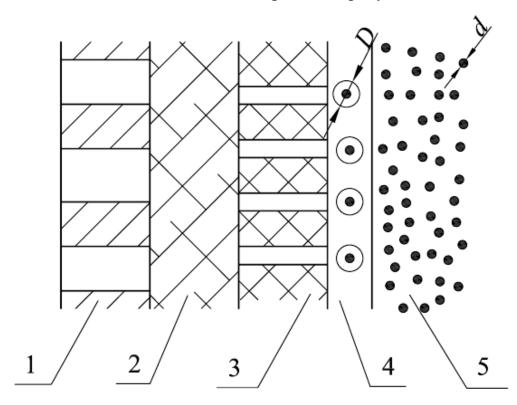

Мембрана – полупроницаемая перегородка, пропускающая определенные компоненты жидких или газовых смесей.

Рисунок 1.5 – Схема классификации полупроницаемых мембран [14]

Механизм разделения на полупроницаемой мембране при ультрафильтрации практически совпадает с механизмом разделения суспензий и пылей на фильтровальных материалах, а именно: размер больших молекул в растворе или смеси газов должен быть больше размера пор в полупроницаемой мембране [14].

Механизм разделения на полупроницаемой мембране при обратном осмосе значительно сложнее. Схематично он изображен на рисунке 1.6.

• — размер ионов d; Δ - размер поры в активном подслое; \mathbf{O} — размер гидратной оболочки вблизи активного подслоя

1- фильтровальная сетка; 2- пористая подложка мембраны; 3- основной подслой мембраны с размером пор Δ ; 4- зона образования жестких гидратных оболочек толщиной ${\bf O}$; 5- ядро раствора с ионами размером ullet

Рисунок 1.6 – Поперечное сечение мембраны при обратноосмотическом процессе [14]

Мембрана укладывается на фильтровальную стенку 1, обеспечивающую жесткость при высоких давлениях, достигающих при обратном осмосе 60 *атм*. Сама мембрана гибкая и состоит из двух подслоев: несущей пористой подложки 2

и основного активного подслоя 3 с размером пор Δ большем, чем размер ионов. Если бы не было особого свойства активного подслоя мембраны 3 создавать вблизи своей поверхности так называемые жесткие гидратные оболочки, размер которых больше размера пор Δ , то ионы свободно бы проходили сквозь такие поры. Но размер гидратной оболочки D на ионах препятствует прохождению ионов сквозь активный подслой мембраны и не прошедшие ионы с гидратными оболочками накапливаются, образуя так называемую концентрационную поляризацию с ионами одинакового электрического заряда в оболочках. Эта концентрационная поляризация значительно тормозит скорость обратноосмотического процесса, уменьшая его производительность по фильтрату, называемого в процессах ультрафильтрации и обратного осмоса пермеатом [2].

Поэтому одной из основных технических и технологических задач для мембранных процессов является предотвращение, нейтрализация или удаление (непрерывное или периодическое) концентрационной поляризации.

1.5 Анализ методов технического творчества, алгоритмизации и проектирования мембранных процессов и аппаратов обратного осмоса и ультрафильтрации

1.5.1 Анализ практических методов технического творчества

В настоящее время плодотворно работает много исследователей, изучающих процесс технического творчества, механизмы творчества, закономерности развития техники. Основы методики изобретательства пытаются осмыслить многие известные зарубежные патентоведы: систематический подход И. Мюллера, основанный на эвристическом алгоритме решения изобретательских задач; методика комплексного решения технических проблем С. Вита; методика творческого инженерного конструирования Г. Р. Буля [46].

Творческий процесс изобретателя условно делится на четыре стадии: подготовка, замысел, поиск и реализация. Каждая из стадий имеет непрерывную

обратную связь с информацией изобретения, опорными знаниями и освоенным фондом методики изобретательства и подразделяется на шаги (рисунок 1.7) [44].

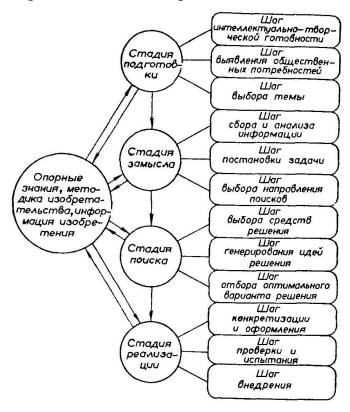


Рисунок 1.7 – Творческий процесс создания изобретения [46]

Метолы технического творчества, базирующиеся на объективных закономерностях, открытых наукой, являются основой создания новых решений общественной технических залач значимостью. Известно множество практических методов технического творчества, которые различаются по своей эвристической ценности, уровню разработки, общности применения, четкости определения. Классификация методов изобретательства может осуществляться по различным признакам [51].

По признаку общности методы изобретательства можно разделить на всеобщий, общие и частные методы изобретательства.

По уровню сложности методы изобретательства разделяются на простые и сложные.

По признаку детерминированности методы изобретательства можно делить на эвристические и алгоритмические.

По назначению методы изобретательства, применяемые для оптимизации творческого процесса изобретателя, упрощенно классифицируются следующим образом .

Таблица 1.2 – Классификация методов изобретательства, применяемых для оптимизации творческого процесса изобретателя [113]

No	Стадия творческого	Основные методы		
31_	процесса	осповные методы		
		поиска информации		
1	Подготовка	выявления общественных потребностей		
		прогнозирования		
		выбора темы		
		анализа информации		
2 Замысе	Замысел	постановки задачи		
		определения поля решения		
		выбора средств решения задачи		
	Поможи розмочна	Генерирование идей		
3	Поиски решения	Апробация идей		
		Верификация идей		
		Конкретизация и оформление решения		
4	Реализация	Опытная проверка решения		
		Освоение, распространение и пропаганда		
		решения		

По эвристическому принципу методы решения изобретательских задач можно условно разделить на следующие основные виды: методы эвристической аналогии, эвристического комплекса, эвристического разделения и соединения, эвристической замены и методы эвристического комбинирования. Эти основные группы, в свою очередь, делятся на множество методов, имеющих свои особенности и приемы.

Особое практическое значение для изобретателей имеет классификация задач по эвристическому принципу, облегчающему выбор методов для поиска конкретного решения.

Методы эвристической аналогии.

Методы эвристической аналогии основываются на естественном стремлении человека к подражанию. С помощью этих методов изобретательские задачи решаются путем усмотрения аналогичных ситуаций в природе, технике, общественных и других явлениях и использования найденных аналогий для устранения противоречий, создавших проблемную ситуацию [46].

Метод приспособления природных конструкций и веществ для технических целей предусматривает проведение ряда несложных операций с объектами природы.

Метод биомеханики рекомендует создать конструктивные изобретения по аналогии с механическим принципом действия объектов природы. Русский ученый П.Л. Чебышев в конце прошлого века разработал "стопоходящую машину", используя принципы движения ног кузнечика.

Метод биохимии рекомендует использовать процессы по аналогии с биохимическими реакциями, ферментами, катализаторами и т. п. Этот метод был использован при создании способов искусственного получения хлорофилла, хинина, мочевины, красителей и др.

Метод биоархитектуры заключается в использовании аналогии с формами, архитектоникой и пропорциями живой природы для решения изобретательских задач.

Метод биокибернетики применяется для решения множества изобретательских задач вплоть до воссоздания искусственных биологических структур, процессов и функций, построения кибернетических устройств, способных осуществлять логические операции [35].

Метод аналогии с предметами, явлениями и веществами неживой природы также позволяет в ряде случаев решать изобретательские задачи. Так, сотрудник Грозненского нефтяного научно-исследовательского института Я. Мирский для молекулярного раздела нефти создал молекулярные сита на основе аналогии с природными камнями - неолитами.

Метод аналогии с физическими явлениями позволил Г. Галилею изобрести маятник для измерения биений пульса по аналогии с раскачивающейся люстрой в Пизанском соборе [44].

Метод аналогии с общественными явлениями был использован Т. Гротгусом для создания способа и теории электролиза воды.

Метод прецедента применяется для создания новых технических объектов по аналогии с разработанными в прошлом изобретениями.

Метод реинтеграции (метод нити Ариадны) заключается в создании нового сложного технического объекта или процесса по аналогии с одной особо значащей деталью, операцией или простым техническим объектом.

Метод замещения конструкций их эквивалентами использовал финский изобретатель Э. Хенриксон при создании новой конструкции замка без пружин, применив" поворачивающиеся шайбы кассового аппарата [43].

Метод протезирования заключается в подборе и замещении элементов технического объекта или живого организма функционально аналогичным техническим устройством, в случае, когда регенерация или замена тождественными запасными частями невозможны.

Метод увеличения размеров основан на существующей тенденции к увеличению размеров прототипа некоторых технических объектов.

Метод моделирования позволяет решать многообразные изобретательские задачи. Для этой цели можно использовать физическое (миниатюрное, партикулярное), математическое и кибернетическое моделирование [46].

Метод имитации заключается в создании таких технических объектов, которые по форме, цвету, внешнему виду аналогичны какому-то объекту, но по ряду других свойств (например, по химическому составу, структуре) не соответствуют ему.

Метод псевдоморфизации предполагает выполнение одного технического объекта в форме другого, имеющего совершенно иное назначение, с целью создать ложное представление.

Метод антропоморфизации заключается в создании человекоподобных по внешнему виду технических конструкций.

Метод аналогии с формой животных и растений целесообразен не только с технической, но и с художественной точки зрения, поскольку пропорциональность, гармоничность, цветовые характеристики природных аналогов могут быть с успехом применены для создания совершенных и красивых технических изделий.

Методы эвристического комплекса.

Эвристическое объединение технических объектов, их элементов, веществ, функций, операций и даже технических объектов с живыми организмами лежит в основе методов эвристического комплекса [79].

В изобретательской практике применяются три схемы комплексного объединения элементов: новое + новое; новое + старое; старое + старое.

Метод интеграции заключается в комплексном объединении технических объектов или элементов, имеющих самостоятельное значение и сохраняющих его после объединения в новом комплексе.

Метод концентрирующей интеграции заключается в создании нового технического объекта путем такого объединения двух или нескольких элементов самостоятельного назначения, при котором они полностью или частично включаются один в другой.

Метод создания телескопических конструкций является разновидностью метода концентрирующей интеграции.

Метод пространственного сращения также является разновидностью метода концентрирующей интеграции.

Метод агглютинации осуществляется путем присоединения к основному техническому объекту другого, который может и не иметь самостоятельного значения, причем присоединение может осуществляться без изменения конструкции соединяемых объектов и быть временным [59].

Метод объединения технических объектов посредством применения промежуточных элементов или операций позволил группе изобретателей Рижского государственного электротехнического завода ВЭФ под руководством Ю. П. Поне

разработать новый способ установки радиоэлементов с гибкими выводами на платы с печатным монтажом [76].

Метод объединения нескольких процессов был применен при создании способа переработки отходов титана.

Метод объединения технических элементов или систем с живыми организмами в единую техническую систему является прогрессивным приемом решения изобретательских задач.

Метод агрегатирования заключается в создании новых технических объектов путем объединения стандартных технических элементов, имеющих самостоятельное назначение.

Метод объединения унифицированных элементов, узлов, деталей, будучи эффективным методом технического творчества, редко дает решение задания на уровне изобретения.

Метод модульных элементов - разновидность рассматриваемого метода - применил еще Поллион Марк Витрувий, который установил модуль для калибров свинцовых водопроводных труб.

Метод смешивания - один из простейших методов физического объединения материалов и веществ.

Метод непрерывного потока предполагает такое объединение материальных элементов производства, которое позволяет параллельно выполнять процессы, операции и приемы на участке производства и обеспечить непрерывное последовательное движение предмета труда через рабочие места в строго установленном ритме.

Методом увеличения количества одновременно выполняемых функций.

Метод увеличения количества последовательно выполняемых функций позволяет создавать универсальные технические объекты [78].

Метод дублирования заключается в удвоении рабочих органов, рабочих позиций, технологических процессов.

Метод компаундирования состоит в том, что для увеличения производительности параллельно соединяют два технических объекта.

Метод резервирования состоит в увеличении количества ненадежных технических объектов для повышения надежности технического объекта в целом.

Метод мультипликации рабочих органов является простым, эффективным и одним из наиболее распространенных в изобретательской практике.

Метод увеличения количества обрабатываемых деталей имеет два основных приема: увеличение количества деталей, обрабатываемых одновременно на одной рабочей позиции, и расширение номенклатуры поочередно обрабатываемых деталей после некоторой переналадки станка [86].

Метод гирлянд заключается в мультипликации аналогичных технических объектов путем их последовательного присоединения к связывающему нитевидному элементу.

Метод каскадных конструкций и процессов.

Метод многоступенчатых конструкций и процессов позволил Ч. Парсону в 1876 г. создать многоступенчатую реактивную турбину [79].

Метод сплетения основывается на объединении гибких однородных технических элементов.

1.5.2 Физические эффекты и их применения при решении изобретательских задач

Результаты познания человеком окружающего мира выражаются обычно в виде законов и закономерностей природы, правил, примет, примеров, свойств предметов и явлений и т. д. Физические эффекты и явления, законы и научные открытия — наиболее обобщенное выражение результатов познания. Именно они лежат в глубине, в основе всех конкретных технических решений, формируя их ядро — принцип действия или идею решения [97].

Именно физические, физико-химические и другие процессы и явления (включая законы физики, научные открытия и т. д.) — наиболее эффективные пути преодоления противоречий при решении той или иной технической задачи. Объем знаний о них определяет потенциальную творческую мощь изобретателя.

Применению арсенала физических эффектов и явлений предшествуют исследования их сущности, условий возникновения и действия, анализ полезных и вредных проявлений эффекта и т. д., т. е. глубокое предварительное изучение физики [98].

Физические эффекты применяются в широком практическом изобретательстве. Указатель (таблица 1.3) [46] позволяет решать прямые изобретательские задачи и полезен на этапе поиска идеи решения после того, как сформулированы условия задачи, идеальный результат, выявлены техническое и физическое противоречия и определено в общем действие, необходимое для разрешения противоречия.

Таблица 1.3 – Физические эффекты и их применения в изобретательстве [100]

№	Физические эффекты, явления, процессы, силы и т.п.	1
1	Центробежная сила.	Разделение разнородных объектов. Придание объектам определенной формы.
2	Механические колебания. Резонанс. Стоячие воны	Управление перемещением объектов и их составных частей. Измерение различных физических параметров. Избирательное воздействие на один из элементов системы. Усиление механического действия. Создание определенной структуры в веществе.
3	Ультразвук. Кавитация. Удаление слоя концентрационной поляризации	Измерение различных физических параметров. Интенсификация процессов, идущих на молекулярном уровне (смешивание, осаждение, разделение, очистка поверхностей от осадков, разрушение, сварка и т.д.).
4	Эффект Бернулли. Эффект Коанда. Эффект турбулизации струи. Эффект взаимодействия струй.	1

Пролдолжение таблицы 1.3

№	Физические эффекты,	Некоторые возможные применения в				
	явления, процессы, силы	изобретательстве				
	и т.п.					
5	Гидравлический удар.	Импульсная передача механической энергии.				
	Электрогидравлический	Обработка и разрушение твердых сред.				
	удар (эффект Л.	Интенсификация процессов в газообразных и				
	Юткина).	жидких средах.				
	Светогидравлический					
	удар					
6	Капиллярные явления.	Передача и распределение жидкостей по площади				
		и объектам. Равномерное растекание жидкости по				
		поверхности.				
8	Инфракрасное	Нагрев объектов. Определение различных				
	излучение.	характеристик процессов и объектов.				
	Ультрафиолетовое	Интенсификация химических процессов.				
	излучение.	Обеззараживание жидкости.				
9	Фотохромный эффект.	Изменение внешнего вида и прозрачности объекта				
	(Фотоколориметр)	в зависимости от разных факторов.				
10	Эффект обратного	Процесс, в котором, при определённом давлении,				
	осмоса	растворитель проходит через полупроницаемую				
		мембрану из более концентрированного в менее				
		концентрированный раствор, то есть в обратном				
		для осмоса направлении.				
11	Эффект Ребиндера	Свойства границы раздела фаз изменять				
		физические свойства жидкой или газовой газы на				
		границе раздела.				

выводы к первой главе

- 1. Основной проблемой в теории мембранных процессов и создании более точных алгоритмов расчетов и программ является учет структуры потоков, связанной с отклонением течения растворов в круглых и плоских каналах капилляров и пленок как от идеального вытеснения, так и от идеального смешения, так как разница в расчетах поверхностей мембран может составлять 150%, а степень очистки пермеата (фильтрата) может изменяться в 3,8 раза.
- 2. Использование метода наименьших квадратов (МНК) при корреляционном анализе целесообразно усовершенствовать:

- а) его заменой на метод наименьших относительных квадратов (МНОК), позволяющий минимизировать не сумму квадратов отклонений теоретических значений от экспериментальных или табличных данных, а сумму квадратов относительных отклонений вышеназванных заданных и теоретических значений, позволяющий уменьшить наибольшие отклонения по абсолютной величине более чем в 3,4 раза, а средние в 2,5 раза;
- б) разработкой метода кусочной линейной аппроксимации результатов одного опыта или табличных значений зависимости выходного параметра от входного без проведения или наличия параллельных опытов при несовпадающих значениях массива аргументов, приведенных в разных источниках информации и позволяющий уменьшить затраты времени на проведение параллельных опытов на 35%.

Ввести в известные типовые алгоритмы и программы расчетов и проектирования мембранных процессов вышеназванные методы.

- 3. Основной проблемой в создании конструкций аппаратов мембранного разделения является подавление, нейтрализации или удаления слоя молекул или ионов, не прошедших сквозь поры полупроницаемой мембраны, называемых концентрационной поляризацией. Необходимо разработать новые конструкции мембранных аппаратов с комплексным использованием известных физических эффектов и методов инженерного творчества, совмещающих в одном аппарате несколько технических операций.
- 4. Технической проблемой является также создание избыточное давление над мембраной или так называемой движущей силы. Особенно выпукло эта проблема проявляется в процессах обратного осмоса, где движущая сила составляет от 40 до 60 *атм*. Решение этой проблемы возможно при создании алгоритмов и программ для мембранных процессов в центробежном поле.

Глава II. МЕТОДИКА КОМПЬЮТЕРНОЙ ПОДДЕРЖКИ ПРОЦЕССА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ МЕМБРАННЫХ АППАРАТОВ

2.1 Алгоритм расчета процесса ультрафильтрации с учетом продольной диффузии потока очищаемого раствора

На рисунке 2.1 представлена схема процесса автоматизированного проектирования мембранных аппаратов [108].

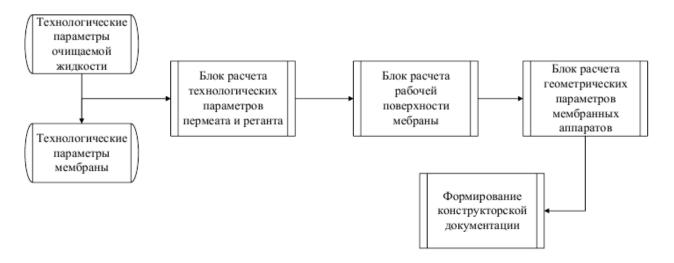


Рисунок 2.1 — Схема процесса автоматизированного проектирования мембранных аппаратов

Типовые методы расчета ультрафильтрационных мембран основаны на режиме идеального вытеснения по очищаемому раствору, движущемуся над полупроницаемой [1-4].Для нейтрализации эффекта перегородкой концентрационной поляризации часто применяют вибрацию, статические и перемешивающие устройства, приводящие к динамические значительному отклонению структуры потока очищаемого раствора otидеального вытеснения.

Аналогичные гидромеханические процессы в массообменных аппаратах и химических реакторах, занимающие промежуточное положение по структуре

потоков между идеальным вытеснением и смешением, описываются так называемой однопараметрической диффузионной моделью или моделью с продольной диффузией [7-9].

На рис. 2.2 изображена схема ультарафильтрационного аппарата с материальными потоками и их концентрациями и учитывающая продольную диффузию [108].

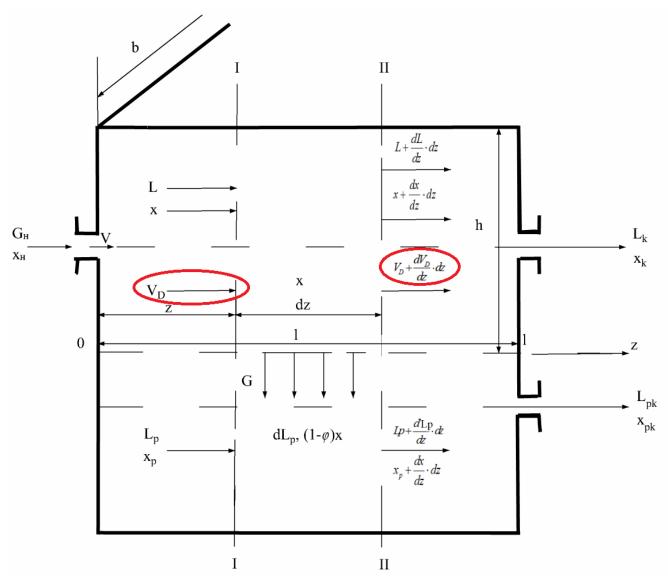


Рисунок 2.2 – Схема ультрафильтрационного процесса с диффузионной структурой потока (в овалах добавлен диффузионный материальный поток, отличающий схему потока с идеальным вытеснением)

Выделим на длине z от входа аппарата сечения I-I и II-II с расстоянием между ними dz.

Составим элементарный материальный баланс по раствору для выделенного объема dV = bhdz:

$$L = L + \frac{dL}{dz}dz + bGdz$$
,

где $G = (a_m \frac{\mu_0}{\mu}) \Delta p$ — удельная производительность по пермеату.

Решение после алгебраических преобразований и интегрирования с учетом граничного условия: $z=0, L=G_{H}$ принимает вид:

$$L = G_H - bGz . (2.1)$$

Аналогичный элементарный материальный баланс по молекулам растворенного вещества с учетом скорости продольного диффузии V_D принимает вид:

$$L_x + bhV_D = (L + \frac{dL}{dz}dz)(x + \frac{dx}{dz}dz) + bh(V_D + \frac{dV_D}{dz}dz) + bGdz(1 - \phi)x.$$

Проведя алгебраические преобразования и отбрасывая бесконечно малые высших порядков приходим к выражению:

$$x\frac{dL}{dz}dz + L\frac{dx}{dz}dz + bh\frac{dV_D}{dz}dz + bGdz(1-\phi)x = 0.$$
 (2.2)

По аналогии с уравнением скорости молекулярной диффузии (первым законом Фика), заменяя коэффициент молекулярной диффузии на коэффициент продольной диффузии D_l [7-9], получаем:

$$V_D = -D_l \rho \frac{dx}{dz}.$$

Тогда вышеупомянутое выражение (2.2) с учетом уравнения скорости продольной диффузии после алгебраических преобразований принимает форму неоднородного дифференциального уравнения II порядка [10]:

$$bhD_l \rho \frac{d^2x}{dz^2} = L \frac{dx}{dz} - bGx + bGx_{pz} . \qquad (2.3)$$

Так как расходы пермеата и ретанта связаны интегральным уравнением:

$$G_H = L_{pk} + L_k, (2.4)$$

общий расход пермеата описывается формулой:

$$L_{pk} = blG, (2.5)$$

а концентрации в пермеате и ретанте молекул растворенного вещества уравнением:

$$x_{pz} = x(1 - \phi), (2.6)$$

то переходя к безразмерной длине $Z = \frac{z}{l}$, получаем неоднородное дифференциальное уравнение II порядка [10]:

$$\frac{1}{Pe_o} \frac{d^2x}{dZ^2} = (1 - \frac{L_{pk}}{G_H} Z) \frac{dx}{dZ} - \frac{L_{pk}}{G_H} \phi x, \tag{2.7}$$

где безразмерный критерий Пекле продольной диффузии для очищаемого раствора:

$$Pe_o = \frac{V_0 l}{D_l}$$
.

Особенностью выражения для Пекле Pe_0 в отличие от числа Пекле продольной диффузии при расчете массообменных процессов и химических реакторов [7-9] является то, что скорость $V_0 = G_H / \rho bh$, то есть относится к начальному участку Z=0 с граничным условием:

$$Z = 0, x_H = x_b - \frac{1}{Pe_0} (\frac{dx}{dZ}),$$
 (2.8)

где $x_b > x_H$, приводящим к скачку концентрации на входе.

Второе граничное условие:

$$Z = 1, x = x_k. (2.9)$$

Неоднородное дифференциальное уравнение II порядка (2.7) с граничными условиями (2.8) и (2.9) не имеет аналитического решения.

Алгоритм численного решения уравнения (2.7) представлен ниже.

Переводим дифференциальное уравнение (2.7) в численный вид:

$$g_{i+1} = g_i + Pe_0(1 - \frac{L_{pk}}{G_H}Z_i)g_i\Delta Z - (\frac{L_{pk}}{G_H})Pe_0\phi x_i\Delta Z, \qquad (2.10)$$

где $g_i = (\frac{dx}{dz})i$ – градиент концентрации молекул растворенного вещества в ретанте по безразмерной длине Z. Задаемся интервалом по безразмерной длине, например $\Delta Z = 0{,}001$, то есть числом итераций, $n{=}1000$. С учетом граничного условия на входе (2.9) для входной итерации i=1, принимаем:

$$X_H < X_b < X_k$$
,

и определяем $g_1 = (x_b - x_H)Pe_l$:

$$Z_1 = i \cdot \Delta Z \, \text{M} \, x_1 = x_b$$
.

Тогда:

$$g_2 = g_1 + Pe_0(1 - \frac{L_{pk}}{G_H}Z_i)g_i\Delta Z - (\frac{L_{pk}}{G_H})Pe_0yx_i\Delta Z.$$

Правильный выбор x_b определяется из условия:

$$x_n \approx x_k \,, \tag{2.11}$$

с заданной точностью. Это можно сделать, используя метод половинного деления. Концентрации x_{i+1} на каждой итерации можно определить следующим образом $x_{i+1} = x_i + g_i \Delta Z$.

Для определения зависимости концентрации молекул растворенного вещества в пермеате от безразмерной длины Z составим элементарный материальный баланс в выбранном сечении длиной dZ (рис. 2.2) и возьмем определенные интегралы от левой и правой частей:

$$\int_{(1-\varphi)x_H}^{x_p} dx_p = \frac{\int_0^Z Gb(1-\varphi)xdz}{\int_0^Z Gbdz},$$

или в численном виде:

$$x_{pj} = (1 - \varphi) \frac{\sum_{i=1}^{j} x_i}{K}.$$

Алгоритм численного решения уравнения (2.7) представлен на рисунке 2.3.

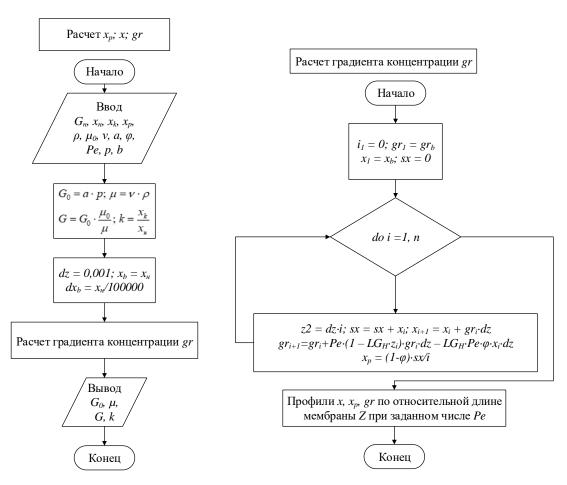


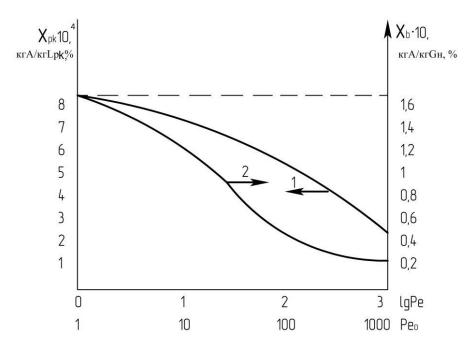
Рисунок 2.3 - Блок-схема алгоритма численного расчета процесса ультрафильтрации с учетом продольной диффузии

Таблица 2.1 - Исходные и справочные данные и расчетные параметры процесса ультрафильтрации с учетом продольного перемешивания [1]

$N_{\underline{0}}$	Наименование параметра	Размерность	Обозначение	Величина
	<u>Исходнь</u>	ые и справочные	<u>данные</u>	
1	Производительность по	кг/с	$G_{\scriptscriptstyle \mathrm{H}}$	0.2
	исходному раствору			
2	Начальная концентрация	кгА/	$X_{\scriptscriptstyle H}$	0.015
	молекул ацилазы в	кг $G_{\scriptscriptstyle{H}}$, %		
	исходном растворе			

Продолжение таблицы 2.1

No॒	Наименование параметра	Размерн-	Обозн- ачение	Величина			
3	Конечная концентрация молекул ацилазы в исходном растворе	кгА/ кгLк, %	X_{κ}	0.15			
4	Рабочая температура	$^{\circ}C$	t		25		
5	Истинная селективность мембраны УАМ-150 по молекулам ацилазы	П	у		0.995		
6	Константе проницаемости мембраны по чистой воде	кг/(м²сМ Па)	a	0.5			
7	Рабочий перепад давления	МПа	p	0.2			
8	Плотность водного раствора ацилазы	кг/м ³	ρ	1036			
9	Кинематическая вязкость раствора	M^2/C	ν	9.44×10 ⁻⁷			
10	Динамическая вязкость чистой дистиллированной воды	Па.с	μ_0	8.94×10 ⁻⁴			
	Расч	етные парам	метры				
				ИВ $Pe_0 \to \infty$	Π Д $Pe_0 = 100$	ИС $Pe_0 \to 0$	
1	Степень концентрирования раствора	_	K	10	10	10	


Продолжение таблицы 2.1

№	Наименование Размерн		Обознач	Величина			
145	параметра	ость	ение	ИВ	ПД	ИС	
				$Pe_0 \rightarrow \infty$	$Pe_0 = 100$	$Pe_0 \rightarrow 0$	
2	Динамическая вязкость раствора	Пас	μ	1.0007× 10 ⁻³	~10-3	~10-3	
3	Удельная производительность по растворителю	кг/м²	G	2.695× 10 ⁻⁴	2.695× 10 ⁻⁴	2.695× 10 ⁻⁴	
4	Производительность по пермеату на выходе	кгLn/c	$L_{p\kappa}$	1.802× 10 ⁻¹	1.805× 10 ⁻¹	1.809× 10 ⁻¹	
5	Производительность по ретанту на выходе	кгL/с	L_{κ}	1.977× 10 ⁻²	1.955× 10 ⁻¹	1.9095× 10 ⁻²	
6	Концентрация молекул ацилазы в пермеате на выходе	кгА/ кгLрк, %	Хрк	1.915× 10 ⁻⁴	5.26× 10 ⁻⁴	7.5× 10 ⁻⁴	
7	Концентрация молекул ацилазы в ретанте на выходе	кгА/ кгLк, %	X_{K}	0.15	0.15	0.15	
8	Поверхность мембраны	м ²	F _m	668.7	670.6	671.2	

Продолжение таблицы 2.1

№	Наименование параметра	Размерн ость	Обознач ение	Величина		
				ИВ $Pe_0 \rightarrow \infty$	Π Д $Pe_0 = 100$	ИС $Pe_0 \to 0$
9	Градиент концентрации молекул ацилазы в ретанте на входе (отнесенный к безразмерной длине мембраны)	кгА/ кгG _н , %	gb	1.345× 10 ⁻²	5.7	80
10	Концентрация молекул ацилазы в ретанте на входе	кгА/ кг G н, %	X _b	0.015	0.072	0.15

Результаты расчетов по вышеприведенному алгоритму в виде графиков зависимостей концентрации молекул в пермеате и входной концентрации этих молекул в ретанте от числа Pe_0 приведены на рисунке 2.4. Как видно из первого графика концентрация молекул в пермеате в значительной степени зависит от числа Пекле Pe_0 и продольной диффузии, то есть перемешивание исходного раствора в процессе ультрафильтрации с одной стороны снижает концентрационную поляризацию, а с другой ухудшает качество пермеата [108].

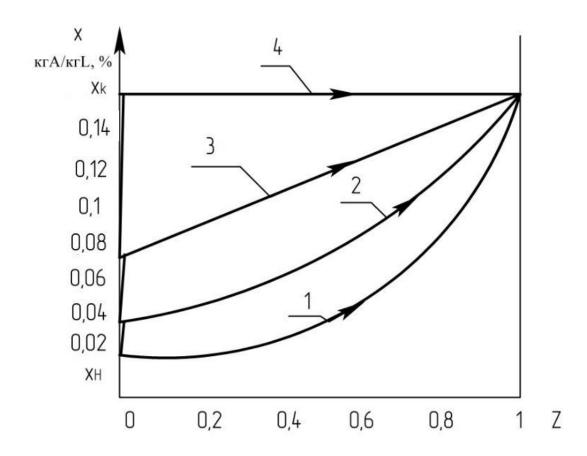
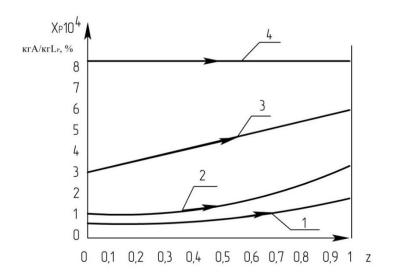

1- в пермеате; 2- в исходном растворе на выходе из аппарата

Рисунок 2.4-3ависимости концентрации молекул в пермеате и входной концентрации этих молекул в ретанте от числа Pe_0

Другая особенность продольной диффузии связана со скачком концентрации исходного раствора на входе. Величина этого скачка тем больше, чем меньше число Pe_0 и изменяется от нуля для режима идеального вытеснения до наибольшего значения в режиме идеального смешения $x_b = x_k$ (рис. 2.4, кривая 2). Профили концентраций молекул ацилазы в ретанте и пермеате в зависимости от относительной длины мембраны приведены на рис. 2.5 и 2.6.


Как видно из этих рисунков с уменьшением числа Pe0 (увеличением коэффициента продольной диффузии D_I) эти концентрации в обоих случаях возрастают с ростом относительной длины Z, при этом градиент концентрации молекул ацилазы в ретанте на выходе при Z=1 не равен нулю, как это имеет место в массообменных и реакторных процессах (это одно из граничных условий при решении дифференциальных уравнений второго порядка, аналогичных дифференциальному уравнению (2.7) в массообменных и реакторных процессах, учитывающих продольную диффузию [7-12]). Еще одна особенность связана с резким возрастанием концентрации молекул ацилазы в пермеате по длине

мембраны при режимах, близких к идеальному вытеснению. Поэтому для получения раствора пермеате повышенной чистоты можно помимо использования мембраны с высокой селективностью и снижением степени концентрирования ретанта провести секционирование приемной камеры, в которую отбирается пермеат. Тогда в первых секциях по ходу течения ретанта будет отбирать пермеат с концентрациями растворенных молекул в 2-3 раза меньше, чем на выходе [108].

1- режим идеального вытеснения $Pe_0 \to \infty$; 2 - режим с обратным перемешиванием $Pe_0 \to 500$; 3 - режим с обратным перемешиванием $Pe_0 \to 100$; 4- режим идеального смешения $Pe_0 \to 0$ Рисунок 2.5 - Профили концентраций молекул ацилазы в ретанте по

относительной длине ультрафильтрационной мембраны

1 - режим идеального вытеснения $Pe_0 \to \infty$; 2 - режим с обратным перемешиванием $Pe_0 \to 500$; 3 - режим с обратным перемешиванием $Pe_0 \to 100$; 4- режим идеального смешения $Pe_0 \to 0$ Рисунок 2.6 - Профили концентраций молекул ацилазы в пермиате по относительной длине ультрафильтрационной мембраны

2.2 Алгоритм расчета процесса ультрафильтрации в центробежном поле

Обычно процесс ультрафильтрации ведут в аппарате, разделенном на две зоны полупроницаемой мембраной, и на входе первой зоны, находящейся над мембраной под избыточным давлением 4-5 *атм*, подают исходный раствор, на выходе получают концентрированный раствор — ретант, а под мембраной-очищенный от молекул, растворенных в исходном растворе веществ, пермеат [1-3].

На наш взгляд, целесообразно проводить ультрафильтрацию в центробежном поле, например, в фильтрующей центрифуге, на боковой поверхности ротора которой вместо фильтровальной экипировки (ткани, металлической сетки или пористой цилиндрической перегородки) закреплена ультрафильтрационная полупроницаемая мембрана. В этом случае при подаче на боковую поверхность исходного раствора он под действием центробежной силы создает слой толщиной $\delta = \delta(z)$, а под действием центробежного давления [125]:

$$p = \frac{\rho \omega^2 \left[R_{_{H}}^2 - (R_{_{H}} - \delta)^2 \right]}{2}$$
 (2.12)

идет процесс разделения на мембране молекул растворителя от молекул растворенного вещества (рис. 2.7).

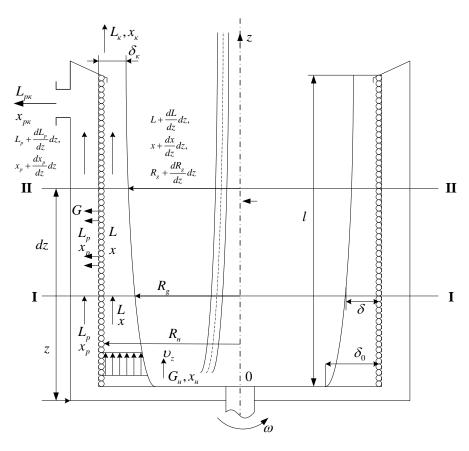


Рисунок 2.7 – Схема ультрафильтрующей центрифуги с материальными потоками и их концентрациями (режим идеального вытеснения по очищаемому раствору)

Выделим по высоте z сечения I-I и II-II с элементарным расстоянием между ними dz и составим материальный баланс по раствору ретанта L и пермеата Lp, а также концентрациям в них растворенного вещества:

$$\begin{split} L + L_p = & \left(L + \frac{dL}{dz} dz \right) + \left(L_p + \frac{dL_p}{dz} dz \right); \\ Lx + L_p x_p = & \left(L + \frac{dL}{dz} dz \right) \cdot \left(x + \frac{dx}{dz} dz \right) + \left(L_p + \frac{dL_p}{dz} \right) dz \cdot \left(x_p + \frac{dx_p}{dz} dz \right). \end{split}$$

После алгебраических преобразований и отбрасывания членов высших порядков малости получаем систему дифференциальных уравнений:

$$\frac{dL}{dz} = -\frac{dL_p}{dz};$$

$$L\frac{dx}{dz} + x\frac{dL}{dz} + L_p\frac{x_p}{dz} + x_p\frac{dL_p}{dz} = 0.$$
(2.13)

Из первого уравнения системы (2.13) с учетом граничного условия: z=0, $L=G_{\rm H}$, Lp=0 получаем интегральное уравнение материального баланса:

$$L + L_p = G_{_H}. \tag{2.14}$$

Тогда второе уравнение перепишется в виде:

$$L\frac{dx}{dz} + x\frac{dL}{dz} + (G_{H} - L)\frac{dx_{p}}{dz} - x_{p}\frac{dL}{dz} = 0.$$
 (2.15)

Интегральное уравнение материального баланса по молекулам растворенного вещества может быть записано следующим образом:

$$G_{\scriptscriptstyle H} x_{\scriptscriptstyle H} = L_{\scriptscriptstyle K} x_{\scriptscriptstyle K} + L_{p\kappa} x_{p\kappa}. \tag{2.16}$$

Составим элементарный баланс по ретанту для выделенного кольцевого объема высотой dz:

$$L = \left(L + \frac{dL}{dz}dz\right) + 2G\pi R_{H}dz , \qquad (2.17)$$

где G - удельная массовая производительность по пермеату, зависящая от центробежного давления.

Так как центробежное давление [1]

$$p = \frac{\rho \omega^2}{2} \left(R_{_{H}}^2 - R_{_{g}}^2 \right) , \qquad (2.18)$$

а удельная производительность по пермеату [1,2]:

$$G = a_m \frac{\mu_0}{\mu} \Delta p \quad , \tag{2.19}$$

где $\Delta p = p - p_a$, то подставляя значение G из формулы (2.19) с учетом выражения (2.18) в уравнение (2.17), получаем после алгебраических преобразований:

$$\frac{dL}{dz} + 2\left\{a_m \left(\frac{\mu_0}{\mu}\right) \left\lceil \frac{\rho \omega^2}{2} R_{_H}^2 - p_a - \frac{\rho \omega^2}{2} R_{_g}^2 \right\rceil \right\} \pi R_{_H} = 0, \qquad (2.20)$$

где p_a =1,03·10⁵ - атмосферное давление в Паскалях за мембраной в зоне течения пермеата (фильтрата).

Полагаем, что осевая скорость v_z ретанта очищаемого раствора постоянна по высоте мембраны. Тогда в выделенных сечениях І-І и ІІ-ІІ элементарное уравнение неразрывности по ретанту будет иметь вид:

$$\upsilon_{z}\pi\left(R_{H}^{2}-R_{g}^{2}\right)=\upsilon_{z}\pi\left[R_{H}^{2}-\left(R_{g}+\frac{dR_{g}}{dz}dz\right)^{2}\right]+2\pi R_{H}\frac{G}{\rho}dz\tag{2.21}$$

или после алгебраических преобразований с учетом формул (2.18) и (2.19) получаем:

$$\upsilon_{z}R_{g}\frac{dR_{g}}{dz} = \frac{R_{H}a_{m}}{\rho}\frac{\mu_{0}}{\mu}\left[\frac{\rho\omega^{2}}{2}R_{H}^{2} - p_{a} - \frac{\rho\omega^{2}}{2}R_{g}^{2}\right].$$

Обозначим $\frac{R_g^2}{2} = y$, тогда последнее равенство можно представить в виде дифференциального уравнения с разделяющимися переменными:

$$\upsilon_z \frac{dy}{dz} = A \Bigg[\Bigg(\frac{\rho \omega^2}{2} R_{_{\!\scriptscriptstyle H}}^2 - p_{_a} \Bigg) - \rho \omega^2 y \Bigg],$$
 где $A = \frac{R_{_{\!\scriptscriptstyle H}} a_{_m}}{\rho} \frac{\mu_0}{\mu}$

решение которого после интегрирования по параметрам z и R_g принимает вид [5]:

$$-\frac{1}{\rho\omega^2}\ln\left[\frac{\rho\omega^2}{2}R_{_{\scriptscriptstyle H}}-p_{_a}-\frac{\rho\omega^2}{2}R_{_g}^2\right]\Big|_{R_{_{g_0}}}^{R_{_g}}=\frac{A}{\nu_{_{_Z}}}z\Big|_{_0}^z,$$

которое в свою очередь после алгебраических преобразований с подстановкой пределов интегрирования запишется следующим образом:

$$\frac{\Delta p}{\Delta p_0} = \frac{\left(\frac{\rho \omega^2}{2} R_{_{\mathit{H}}} - p_a - \frac{\rho \omega^2}{2} R_g^2\right)}{\left(\frac{\rho \omega^2}{2} R_{_{\mathit{H}}}^2 - p_a - \frac{\rho \omega^2}{2} R_{g_0}^2\right)} = \exp\left(-\frac{A\rho \omega^2}{\upsilon_z} z\right). \tag{2.22}$$

Тогда после алгебраических преобразований свободная граница ретанта определяется выражением:

$$R_{g} = \sqrt{\left(R_{H}^{2} - \frac{2p_{a}}{\rho\omega^{2}}\right) - \left(R_{H}^{2} - \frac{2p_{a}}{\rho\omega^{2}} - R_{g_{0}}^{2}\right) \exp\left(-\frac{A\rho\omega^{2}}{\upsilon_{z}}z\right)}, \qquad (2.23)$$

а толщина слоя ретанта
$$\delta = R_n - R_g$$
. (2.24)

Дифференциальное уравнение (2.13) можно упростить до вида:

$$\frac{d(L_p x_p)}{dz} + \frac{d(Lx)}{dz} = 0. ag{2.25}$$

После интегрирования для произвольного сечения z с учетом граничного условия: z=0, $L=G_n$, Lp=0, $x_p=0$, $x=x_n$ получаем интегральное уравнение материального баланса по молекулам растворенного вещества:

$$L_{p}x_{p} + Lx = G_{\mu}x_{\mu}, \qquad (2.26)$$

которое при z=l переходит в уравнение (2.16).

Для определения зависимостей x_p и x от координаты z свяжем эти концентрации в пермеате x_p и ретанте x дифференциальным уравнением материального баланса в кольцевом объеме между сечениями I-I и II-II высотой dz

$$L_{p}x_{p} + 2\pi R_{H}Gx(1-\varphi)dz = \left(L_{p} + \frac{dL_{p}}{dz}dz\right)\left(x_{p} + \frac{dx_{p}}{dz}dz\right),$$

где φ - истинная селективность мембраны [1,2].

После алгебраических преобразований последнее выражение принимает вид:

$$\frac{d(L_p x_p)}{dz} = \left(2\pi R_{\scriptscriptstyle H}\right) \left\{ a_m \left(\frac{\mu_0}{\mu}\right) \left[\frac{\rho \omega^2}{2} \left(R_{\scriptscriptstyle H}^2 - R_{\scriptscriptstyle g}^2\right) - p_a \right] \right\} x \left(1 - \varphi\right)$$
 (2.27)

Выражение, стоящее в квадратных скобках, можно заменить на зависимость от z, исходя из уравнения (2.22). Тогда:

$$\frac{d(L_p x_p)}{dz} = 2\pi R_{\scriptscriptstyle H} a_{\scriptscriptstyle m} \left(\frac{\mu_0}{\mu}\right) \left[\frac{\rho \omega^2}{2} \left(R_{\scriptscriptstyle H}^2 - R_{g_0}^2\right) - p_a\right] \left(1 - \varphi\right) x \exp\left(-\frac{A\rho \omega^2}{\upsilon_z}z\right). \tag{2.28}$$

С учетом уравнения (2.26) уравнение (2.28) приобретает вид

$$-\frac{d(Lx)}{dz} = \left\{2\pi R_{\scriptscriptstyle H} a_{\scriptscriptstyle m} \left(\frac{\mu_0}{\mu}\right) \left[\frac{\rho \omega^2}{2} \left(R_{\scriptscriptstyle H}^2 - R_{g_0}^2\right) - p_a\right] (1-\varphi)\right\} x \exp\left(-\frac{A\rho \omega^2}{\upsilon_z}z\right). (2.29)$$

Расход ретанта L для произвольного сечения z можно получить исходя из постоянства осевой скорости v_x и уравнения неразрывности

$$L = \pi \rho (R_{_{H}}^{2} - R_{_{g}}^{2}) \upsilon_{_{z}}, \qquad (2.30)$$

а расход пермеата из уравнения (2.14)

$$L_p = G_{\scriptscriptstyle H} - L. \tag{2.31}$$

Из уравнения (2.22) разность квадратов $R_{_{\! H}}^2 - R_{_{\! g}}^2$ определяет выражением

$$R_{_{\mathit{H}}}^{2}-R_{_{\mathit{g}}}^{2}=\frac{\left\{p_{_{\mathit{a}}}+\left[\frac{\rho\omega^{^{2}}}{2}\left(R_{_{\mathit{H}}}^{2}-R_{_{g_{0}}}^{2}\right)-p_{_{\mathit{a}}}\right]\exp\left(-\frac{A\rho\omega^{^{2}}}{\upsilon_{_{\mathit{z}}}}z\right)\right\}}{\frac{\rho\omega^{^{2}}}{2}}.$$

Тогда расход ретанта как функция высоты z будет определяться в виде:

$$L = \frac{\pi \rho v_z \left\{ p_a + \left[\frac{\rho \omega^2}{2} \left(R_H^2 - R_{g_0}^2 \right) - p_a \right] \exp \left(-\frac{A \rho \omega^2}{v_z} z \right) \right\}}{\frac{\rho \omega^2}{2}}.$$
 (2.32)

Для определения зависимости концентрации x растворенных молекул в ретанте от высоты z составим элементарный материальный баланс по массе этих молекул для выделенного сечения высотой dz

$$Lx = \left(L + \frac{dL}{dz}dz\right)\left(x + \frac{dx}{dz}dz\right) + a_m\left(\frac{\mu}{\mu_0}\right) 2\pi R_\mu dz \Delta p (1 - \varphi)x,$$

где последнее слагаемое в правой части - расход растворенных молекул в пермеате для заданной селективности мембраны φ .

После алгебраических преобразований с учетом формул (2.22) и (2.32) получаем дифференциальное уравнение:

$$\frac{d(\ln x)}{dz} = \frac{b\Delta p_0 \exp(-bz)}{p_a + \Delta p_0 \exp(-bz)} - \frac{2\pi R_{_H} a_m \left(\frac{\mu_0}{\mu}\right) (1 - \varphi) \Delta p_0 \exp(-bz)}{\left[\frac{2\pi \rho v_z}{\rho \omega^2}\right] \left[p_a + \Delta p_0 \exp(-bz)\right]},$$

которое имеет аналитическое решение [5] и с учетом граничного условия: z=0, $x=x_{H}$, принимающее вид:

$$x = x_{H} \left[\frac{p_{a} + \Delta p_{0}}{p_{a} + \Delta p_{0} \exp(-bz)} \right]^{\varphi}. \tag{2.33}$$

Тогда с учетом интегрального уравнения (2.56) материального баланса по растворенным молекулам в пермеате

$$x_{p} = \frac{\left(G_{H}x_{H} - Lx\right)}{L_{p}} \tag{2.34}$$

В таблице 2.2 приведены исходные и справочные данные и основные расчетные параметры по очистке водного раствора ацилазы на полупроницаемой мембране УАМ-150, закрепленной на боковой поверхности перфорированного ротора центрифуги.

Расчеты по формулам (2.23), (2.24), (2.31), (2.32), (2.33) и (2.34) показывают, что зависимости радиуса свободной границы слоя ретанта R_n , толщины слоя δ , расходов ретанта L, концентрации растворенных молекул ацилазы в ретанте x от координаты высоты ротора z носят практически линейный характер и изменяются незначительно. Так толщина δ изменяется от δ_0 =0,05 м при z=0 до δ_κ =0,0482 м при z=l, то есть на 2,4%, расход ретанта с G_n =0,2 кг/с до 0,1933 кг/с, то есть на 0,67%, концентрация в ретанте с x_n =0,016% до x_κ =0,01552, то есть на 3,5%.

Графики зависимостей концентраций молекул ацилазы в пермеате x_p и расхода пермеата L_p от координаты z приведены на рис. 2.8.

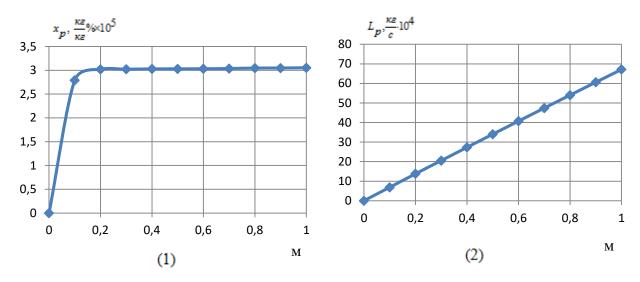


Рисунок 2.8 – Зависимости концентраций молекул растворенных веществ (1) в пермеате и расхода пермеата (2) от высоты ротора

Таблица 2.2 - Исходные и справочные данные и расчетные параметры ультрафильтрационной мембраны, закрепленной на перфорированной боковой стенке ротора центрифуги и предназначенной для очистки водного раствора ацилазы [1]

No॒	Наименование параметра	Размернос	Обознач	Величина
		ТЬ	ение	
	Исходные и справочные данные*			
1	Производительность по начальному	кг/с	$G_{\scriptscriptstyle{H}}$	0,2
	раствору			
2	Начальная массовая концентрация	%	$\mathcal{X}_{\mathcal{H}}$	0,015
	молекул ацилазы в начальном растворе			
3	Рабочая температура	0 C	t	25
4	Диаметр молекул ацилазы	МК	$d_{\scriptscriptstyle M}$	7
5	Истинная селективность мембраны	-	φ	0,998
6	Диаметр пор в мембране УАМ-150	МК	d_p	15
7	Константа проницаемости по чистой	кг	a	0,075
	воде	$\overline{M^2 \cdot c \cdot M\Pi a}$		
8	Давление в зоне получения пермеата за	Па	p_a	10^{5}
	ротором центрифуги			
9	Высота ротора	М	l	1
10	Плотность водного раствора ацилазы	кг/м ³	ρ	1036
11	Кинематическая вязкость раствора	M^2/C	v	9,44.10-7
	ацилазы			
12	Радиус ротора	М	R_n	0,4

Продолжение таблицы 2.2

No	Наименование параметра	Размерность	Обознач ение	Величина
13	Толщина слоя ротора в нижней части ротора на входе	М	δ_0	0,05
14	Скорость вращения ротора	1/c	W	120
15	Динамическая вязкость чистой дистиллированной воды	Па.с	μ_0	8,94·10-4
	Расчетные параметры			
1	Динамическая вязкость раствора	Па.с	μ_0	9, 78·10-4
2	Радиус свободной границы слоя раствора на входе	М	R_{g0}	0,035
3	Осевая скорость раствора вдоль поверхности ротора	М	v_z	1,64·10-3
4	Перепад давления на роторе в нижней части ротора на входе раствора при $z=0$	Па	Δp_0	1,767·10 ⁻⁵
5	Расход ретанта на выходе	кг/с	L_k	1,933·10-1
6	Расход пермеата на выходе	кг/с	$L_{p\kappa}$	6,714·10 ⁻³

Как видно из результатов расчетов, представленных в таб. 2.2, степень концентрирования составляет K=1,035, то есть концентрация молекул ацилазы в ретанте увеличивается всего на 3,5% по сравнению с исходным раствором. Мала и производительность по пермеату. Она составляет всего 3,34%. Однако степень очистки составляет K_p =491,4, то есть доля молекул ацилазы в пермеате уменьшается почти в 500 раз.

Ультрафильтрационные мембраны могут работать при давлениях до 5 атм. Увеличим скорость вращения ротора до $w=160\ I/c$. Тогда перепад давления на входе будет составлять $\Delta p_0=3,94\cdot10^5\ \Pi a$, то есть почти 4 атм, константа концентрирования возрастет с K=1,035 до K=1,079, возрастет и производительность по пермеату с $L_{p\kappa}=6,75\cdot10^{-3}\ \kappa z/c$ до $L_{p\kappa}=1,46\cdot10^{-2}\ \kappa z/c$, то есть более чем 2 раза, но при этом степень очистки раствора в пермеате снизится с $K_p=491,4$ до $K_p=481,6$. Таким образом, ацетатцеллюлозные мембраны типа УАМ

целесообразно использовать в качестве экипировки перфорированного ротора центрифуг для получения небольших объемов очищаемого пермеата и позволяющих уменьшить концентрацию молекул растворенных веществ на 2 и более порядков (фармакология, медицина, радиоактивные молекулы в растворах).

Для увеличения степени концентрирования и производительности по пермеату необходимо увеличить давление, а значит число оборотов ротора, но использовать не сжимаемые при высоких давлениях полимерные мембраны, а субмикронные пористые твердые металлические, керамические или металлокерамические материалы [6, 7].

Например, при вращении ротора с угловой скоростью w=300 1/c или порядка 3000 об/мин рабочий перепад давления на роторе составит Δp_0 =16,5 amm, степень концентрирования ретанта K=1,37, степень очистки K_p =428,4, а производительность по пермеату возрастет до $L_{p\kappa}$ =5,44·10⁻² $\kappa c/c$, то есть возрастет более чем в 8 раз.

Таким образом, использование ультрафильтрационных полимерных полупроницаемых мембран в центрифугах возможно при ограниченном числе оборотов ротора, и целесообразно при необходимости получения малых объемов пермеата с высокой степенью очистки от молекул растворенных веществ. Увеличение производительности по пермеату при сохранении высокой степени очистки его от растворенных молекул возможно только при замене полимерных мембран на жесткие пористые перегородки с субмикронными размерами пор. Однако и в этом случае из-за малой поверхности мембраны степень концентрирования исходного раствора остается незначительной [125].

2.3 Алгоритм для расчета обратноосмотического процесса с диффузионной структурой потока по очищаемому раствору

На рисунке 2.9 изображена схема процесса обратного осмоса с материальным потоками и концентрациями в них молекул и ионов растворенного вещества.

Выделим на расстоянии z от входа начального раствора в аппарате сечения I-I и II-II с элементарным расстоянием между ними dz, разложим неизвестные функции G_x и G_ϕ в ряд Тейлора и, отбрасывая члены второго порядка малости, составим элементарные материальные балансы по потокам исходного раствора G, концентрациям в нем молекул и ионов и расходам фильтрата G_ϕ [104].

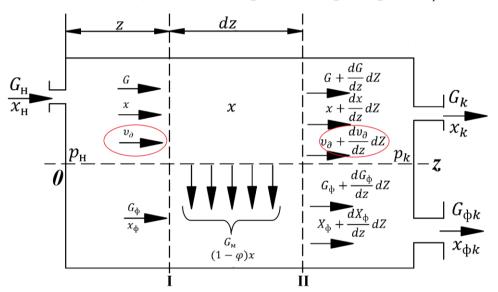


Рисунок 2.9 — Схема процесса обратного осмоса с материальными потоками и концентрациями в них молекул и ионов растворенного вещества (в овалах выделены материальные потоки, связанные с продольной диффузией)

$$\begin{cases}
G = (G + \frac{dG}{dz}dz) + G_{\scriptscriptstyle M}bdz; \\
G \cdot x + \upsilon_{\scriptscriptstyle \partial}\rho b = (G + \frac{dG}{dz}dz)(x + \frac{dx}{dz}dz) + G_{\scriptscriptstyle M}x(1 - \phi)bdz + (\upsilon_{\scriptscriptstyle \partial} + \frac{d\upsilon_{\scriptscriptstyle \partial}}{dz}dz)\rho bh; \\
G_{\scriptscriptstyle \phi}x_{\scriptscriptstyle \phi} + G_{\scriptscriptstyle M}b(1 - \phi)xdz = (G_{\scriptscriptstyle \phi} + \frac{dG_{\scriptscriptstyle \phi}}{dz}dz)(x_{\scriptscriptstyle \phi} + \frac{dx_{\scriptscriptstyle \phi}}{dz}dz).
\end{cases} (2.35)$$

Первое уравнение системы (2.35) характеризует элементарный материальный баланс по раствору, второе по молекулам и ионам растворенного вещества в растворе, третье - по молекулам и ионам растворенного вещества в фильтрате.

После алгебраических преобразований получаем систему дифференциальных уравнений (2.36):

$$\begin{cases}
\frac{dG}{dz} = -G_{M}b \\
x\frac{dG}{dz} + G\frac{dx}{dz} + G_{M}b(1-\phi)x + \rho bh\frac{dv_{\partial}}{dz} = 0; \\
G_{M}b(1-\phi)x = x_{\phi}\frac{dG_{\phi}}{dz} + G_{\phi}\frac{dx_{\phi}}{dz}.
\end{cases} (2.36)$$

Решение первого уравнения системы (2.36) с учетом граничного условия: z=0 $G=G_{H}$ имеет вид уравнения (2.37):

$$G = G_{\scriptscriptstyle H} - G_{\scriptscriptstyle M} bz. \tag{2.37}$$

Для работы со вторым уравнением системы (2.36) воспользуемся модифицированным законом Фика [4]:

$$v_{\partial} = -D_l \frac{dx}{dz}, \qquad (2.38)$$

в котором вместо коэффициента молекулярной диффузии D используется коэффициент продольной диффузии D_l . Это обычный прием, используемый для моделей, описываемых диффузионной структурой потока в массообменных аппаратах и реакторах [4-7].

Тогда второе уравнение системы (2.36) с учетом уравнения (2.35) этой же системы и уравнения (2.37) принимает вид уравнения:

$$\rho bhD_{l}\frac{d^{2}x}{dz^{2}}=(G_{H}-G_{M}bz)\frac{dx}{dz}-G_{M}b\phi_{x}.$$

Введем безразмерную длину $Z = \frac{z}{l}$, где l - длина мембраны и разделим правую и левую часть последнего выражения на G_{H} .

Так как из уравнения неразрывности $G_{_{\!\!H}}=\rho bh\upsilon_{_{\!\!Z}}$, а число Пекле продольной диффузии $Pe_{_{\!\!I}}=\frac{\upsilon_{_{\!\!I}}}{D_{_{\!\!I}}}$, то после алгебраических преобразований получаем последнее

дифференциальные уравнения в виде:

$$\frac{1}{Pe_l} \frac{d^2 x}{dZ^2} = \left[1 - \left(\frac{G_{\phi\kappa}}{G_{_{\scriptscriptstyle H}}} \right) z \right] \frac{dx}{dZ} - \left(\frac{G_{\phi\kappa}}{G_{_{\scriptscriptstyle H}}} \right) \phi_{_{\scriptscriptstyle X}}, \tag{2.39}$$

где $G_{\phi \kappa} = G_{{\scriptscriptstyle M}} b l$, а $G_{{\scriptscriptstyle H}} = G_{{\scriptscriptstyle K}} - G_{\phi \kappa}$.

Это дифференциальное уравнение II порядка с граничными условиями:

$$\begin{cases}
z = 0; x_{H} = x_{ex} - \frac{1}{Pe_{l}} \left(\frac{dx}{dz}\right)_{ex} \\
z = 1; x = x_{K}
\end{cases}$$
(2.40)

не имеет аналитического решения.

Представим его в численном виде:

$$g_{i=1} = g_i + Pe_l \left[1 - \left(\frac{G_{\phi\kappa}}{G_{\mu}} \right) Z \right] g_i \Delta Z - Pe_l \left(\frac{G_{\phi\kappa}}{G_{\mu}} \right) \phi x_i \Delta Z$$
 (2.41)

Тогда алгоритм расчета может быть следующий:

- 1) Разбиваем относительную длину Z на n-равных интервалов, например n=1000. Тогда величина dZ=10⁻³. Выбираем расчетное значение Pe_l .
- 2) Задаем x_{ex} больше x_{H} , но меньше x_{K} и по первому граничному условию находим градиент:

$$g_{ex} = Pe_l(x_{ex} - x_{_H}), \tag{2.42}$$

где
$$g_{ex} = \left(\frac{dx}{dz}\right)_{ex}$$
.

- 3. Делаем переадресовку параметров $x_I = x_{ex}$, $g_I = g_e$ и по уравнению (3.7) находим g_2 , а по уравнению $x_2 = x_I + g_I \Delta Z$.
 - 4. Делаем последовательно переадресовку:

$$x_1 = x_2 \qquad g_1 = x_2$$

и так n раз.

5. Сравниваем x(n) с x_{κ} . Если $x(n) \approx x_{\kappa}$ с заданной точностью расчеты заканчиваем.

Если $x(n) \neq x_{\kappa}$ изменяем x_{κ} , например, методам половинного деления и повторяем пункты (2÷5) до выполнения условия (3.8).

6. Рассчитываем изменения концентрации ионов в фильтрате по формуле:

$$x_{\phi(i)} = (1 - \phi) \sum_{i=1}^{k} x_{(i)} G_{M(i)} / \sum_{i=1}^{k} G_{M(i)},$$

где $G_{M(i)} = G_W(1 - \frac{\Pi_i}{\Delta p})$, а $\Pi_i = \Pi_i[x_i]$ - осмотическое давление для концентрации $x_{(i)}$ (задается по справочным данным [1]). В рассматриваемом случае эта табличная зависимость для раствора $CaCl_2$ с относительной ошибкой не превышающей 0,9% описывается линейной зависимостью:

$$\Pi = -0.047 + 0.621x. \tag{2.43}$$

Так как

$$G_{fk} = \sum_{i=1}^{k} G_{Mi}(bl), \qquad (2.44)$$

где b, l — соответственно ширина и длина рулона мембраны, то поверхность мембраны для диффузионной модели при заданном числе Пекле определяем из формулы (2.45):

$$F = \left[G_{\scriptscriptstyle H} \left(\frac{G \phi \phi}{G_{\scriptscriptstyle H}} \right) \right] / \sum_{i=1}^{n} G_{\scriptscriptstyle M(i)}$$
 (2.45)

На рисунке 2.10 приведены результаты расчетов поверхности мембраны (1) и входной концентрации (2) молекул и ионов в очищаемом растворе от числа Пекле продольной диффузии. Как видно из графика при $Pe_l > 9$ увеличение поверхности за счет продольного перемешивания по сравнению с идеальным вытеснением не превышает 5%, то есть расчет можно вести по типовому алгоритму.

Нужно обратить внимание и на другую особенность предлагаемого алгоритма расчетов. В типовом алгоритме, приведенном в пособии по

проектированию [1] усредняют осмотическое давление и вместе с ним удельную производительность по фильтрату. В нашем алгоритме для каждой итерации рассчитываются осмотическое давление по формуле (2.43) и соответствующая ему локальная удельная производительность. Поэтому в типовом расчете необходимая поверхность мембраны составляет $5016,7 \, m^2$, а по предлагаемому алгоритму $4400 \, m^2$, то есть меньше на 12,3%. Можно считать что усредненное осмотическое давление, приводящее к завышению поверхности мембраны в типовом алгоритме, соответствует расчету этой поверхности при Pe = I (см. кривую 1 на рис. 2.10), то есть для диффузионной модели структуры потоков.

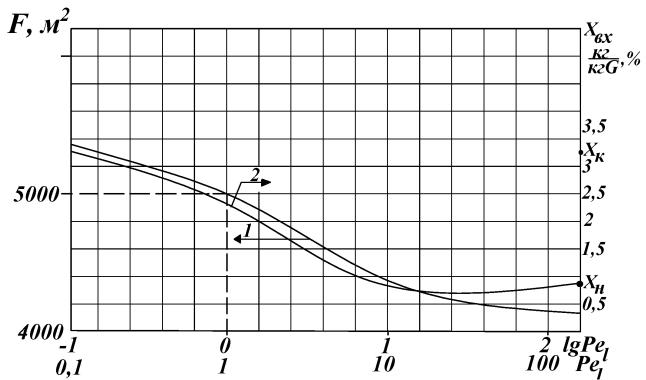
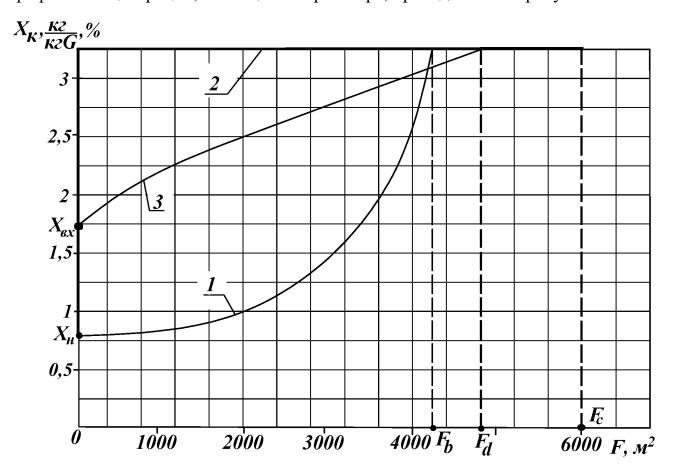
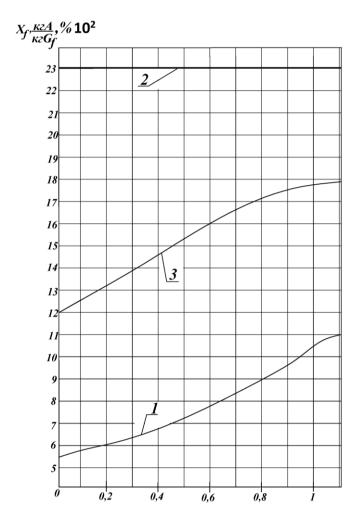



Рисунок 2.10 – Зависимости поверхности мембраны (1) и концентрации ионов хлорида кальция в растворе на входе (2) от числа и Пекле продольной диффузии

На рисунке 2.10 приведены профили концентраций молекул и ионов CaCl₂ по поверхности мембраны при разных числах Пекле продольной диффузии. Как видно из кривой 1 этого графика этот профиль имеет явно нелинейный вид, что и приводит к значительным ошибкам при расчетах поверхности по усредненному осмотическому давлению и соответствующей ему усредненной производительности в типовом алгоритме расчетов. С ростом числа Пекле (кривая


3) профиль концентраций молекул и ионов линеаризируется, что в принципе при $Pe_l < 100$ позволяет проводить расчеты по среднему осмотическому давлению и средней удельной производительности.

Графики профилей концентраций молекул и ионов в фильтрате по безразмерной длине мембраны приведены на рисунке 2.12. Их форма повторяет профили концентраций, в очищаемом растворе, приведенные на рисунке 2.11.

1 — режим идеального вытеснения, $Pe_l \rightarrow \infty$; 2 — режим идеального смешения, $Pe_l \rightarrow \theta$; 3 — режим продольной диффузии при $Pe_l = 2$

Рисунок 2.11 – Профили концентраций молекул CaCl₂ в растворе по площади мембран в обратноосмотическом процессе

1 — идеальное вытеснение, $Pe_l \rightarrow \infty$; 2 — идеальное смешение, $Pe_l \rightarrow 0$; 3 — диффузионная структура потока при $Pe_l = 100$

Рисунок 2.12 — Зависимости концентраций хлорида кальция в фильтрате от безразмерной длины обратноосмотической мембраны

При одинаковой степени концентрирования молекул и ионов в исходном растворе их локальные конечные концентрации в фильтрате существенно зависят от числа Пекле продольной диффузии; продольное перемешивание увеличивает проскок молекул и ионов в фильтрат, что снижает степень его очистки.

Таким образом, предлагаемый алгоритм расчета обратноосматического процесса позволяет учитывать продольную диффузию, которая при Pe_i <9 существенно влияет на величину поверхности мембраны.

Поэтому снижение концентрационной поляризации за счет вибрации, установки статических или динамических смесителей над мембраной позволяет с

одной стороны увеличить удельную производительность за счет смыва с поверхности мембраны задержанных на ее поверхности молекул и ионов растворенного вещества, а с другой приводит к росту продольной диффузии, которая отклоняет поток от идеального вытеснения и способствует увеличению необходимой поверхности.

Степень очистки фильтрата с увеличением продольного перемешивания при $Pe_1 < 9$ по сравнению с идеальным вытеснением значительно снижается.

Так в приведенном примере конечная концентрация молекул и ионов в фильтрате увеличивается более чем в 2 раза, с $10,63\cdot 10^{-3}$ $\frac{\kappa zA}{\kappa zG_{\phi}}$ до $23\cdot 10^{-3}$ $\frac{\kappa zA}{\kappa zG_{\phi}}$.

Таблица 2.3 - Исходные и справочные данные и расчетные параметры для процесса обратного осмоса

№	Наименование параметра	Размер- ность	Обозначение	Величина
	Исході	ные данны	e	
1	Производительность по исходному раствору хлорида кальция ($CaCl_2$)	кг/с	$G_{\scriptscriptstyle{H}}$	5,56
2	Начальная концентрация CaCl ₂ в исходном растворе (абсолютная массовая)	кг А/кг, %	\mathcal{X}_{H}	0,8
3	Конечная концентрация CaCl ₂ в растворе на выходе	моль/л	\mathcal{X}_{κ}	0,3
4	Относительная доля соли CaCl ₂ в фильтрате по сравнению с ее расходом в исходном растворе	доли	δ_f	0,01
	Справоч	чные даннь	ole	
1	Молекулярная масса соли CaCl ₂	кг/кмоль	M	111
2	Плотность концентрированного раствора на выходе при рабочей температуре	кг/м ³	ρ	1023,7
3	Перепад давления не мембране	МПа	Δp	5

Продолжение таблицы 2.3

№	Наименование параметра	Размер- ность	Обозначение	Величина
4	Теплота гидратации ионов кальция (Ca)	кДж/моль	ΔH_{I}	1616
5	Теплота гидратации ионов хлора (Cl)	кДж/моль	ΔH_2	352
6	Число ионов кальция в молекуле соли	-	n_{I}	1
7	Число ионов хлора в молекуле соли	-	n_2	2
8	Массив удельных производительностей по дистиллированной воде мембран различных марок МГА	кг/(м ² ·с)	G_{0}	[1]
9	Массив параметров мембран МГА для расчета истинной селективности	-	$arphi_u(i)$	[1]
10	Массивы зависимостей осмотического давления от концентрации молекул CaCl ₂ в растворе	МПа	Π(i)	[1]
11	Температура раствора	⁰ C	t	25
		е параметры		
1	Конечная концентрация в концентрированном растворе (абсолютная массовая)		X_{κ}	3,253
2	Расход соли с исходным раствором	кг/с	$G_{\scriptscriptstyle HC}$	0,0445
3	Степень концентрированного раствора	-	К	4,07
4	Функция теплоты гидратации молекул $CaCl_2$	кДж/моль	ΔΗ	1381,4
5	Истинная селективность мембраны МГА-100	-	$arphi_u$	0,993
6	Средняя удельная производительность по воде мембраны МГА-100	кг/(м ² ·с)	G_w	1,11.10-3
7	Удельная производительность по фильтрату на входе с учетом осмотического давления	кг/(м ² ·с)	G_{I}	1,00.10-3

Продолжение таблицы 2.3

№	Наименование параметра	Разме р-	Обозн ачени	1	Величина		
		ность	e				
8	Удельная производительность по фильтрату на выходе с учетом осмотического давления	кг/(м ² ·c)	G_2	6,7·10 ⁻⁴			
9	Средняя удельная производительность по фильтрату	кг/(м ² ·c)	$G_{\scriptscriptstyle \mathcal{M}}$		8,38·10 ⁻⁴		
10	Расчетная поверхность мембраны, рассчитанная по средней удельной производительности	M^2	F	5016,4			
11	Осмотическое давление для начальной концентрации раствора	МПа	p_1	0,47			
12	Осматическое давление для начальной концентрированного раствора на выходе	МПа	p_2	1,98			
	Расчетные параметр	ы для ра	зных ст	руктур по	тока		
	1	1	-	ИВ	ПД	ИС	
				$Pe_l \rightarrow \infty$	$Pe_{l} = 100$	$Pe_l \rightarrow 0$	
1	Расход концентрирова-нного расхода на выходе из аппарата	кг/с	G_{κ}	1,354	1,346	1,334	
2	Расход фильтрата на выходе из аппарата	кг/с	Gf_{κ}	4,206	4,214	4,222	
3	Конечная концентрация ионов соли в фильтрате	кгА/с, %	xf_{κ}	1,022 ·10 ⁻²	1,63 ·10 ⁻²	2,3 ·10 ⁻²	
4	Поверхность мембраны	\mathbf{M}^2	F	4107,9	4798,5	6297,8	
5	Удельная производительность с учетом средней концентрации в растворе	кг/(м ² ·c)	G_{cx}	1,024 ·10 ⁻³	9,79 ·10 ⁻⁴	6,74 ·10 ⁻⁴	
6	Средняя концентрация в растворе	кг/кг, %	X_{CB}	1,6110	1,933	3,25	
7	Концентрация ионов соли в растворе на входе в аппарат	кг/кг, %	X_{BX}	0,8	0,889	3,253	

2.4 Алгоритм для расчета процесса обратного осмоса в фильтрующих сверхцентрифугах

Процесс обратного осмоса требует для своего проведения давлений на мембране 40-60 атм. [1,2]. Такое давление можно реализовать на боковой поверхности ротора в сверхцентрифугах при высоком числе оборотов ротора. В настоящее время это число оборотов может достигать n=45000 об/мин или угловой скорости вращения $\omega=4,7\cdot10^3$ c^{-1} [3].

При плотности $\rho = 1000~\kappa c/m^3$, радиусе ротора $R_{\rm H} = 0.05~m$ и радиусе свободной поверхности жидкости $R_{\rm c} = 0.04~m$, давление на поверхности ротора, где может быть установлена полупроницаемая мембрана, определяется по формуле [1-3]:

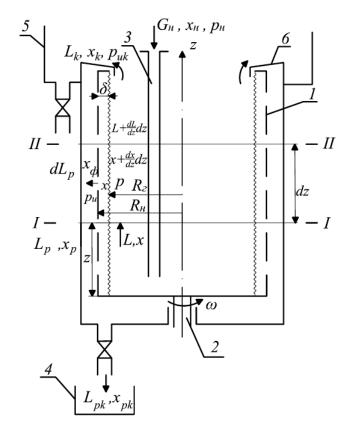
$$p = \rho \cdot \omega^2 \cdot \left(R_{\scriptscriptstyle H}^2 - R_{\scriptscriptstyle c}^2\right) / 2, \tag{2.46}$$

и имеет численное значение $p=10^7~\Pi a\approx 100~amm$. Для рабочих давлений порядка 40-60~amm или $(4\div6)\cdot10^6~\Pi a$ угловая скорость вращения ротора сверхцентрифуги должна быть в пределах:

$$\omega = \sqrt{\frac{2 \cdot p}{\rho \cdot (R_{H}^{2} - R_{c}^{2})}} = (2.9 \div 3.7) \cdot 10^{3} (c^{-1})$$

или $n = (28 \div 35) \cdot 10^3$ об/мин, то есть сверхцентрифуги могут обеспечить необходимое давление в $40 \div 60$ атм. на стенках ротора, где можно закрепить обратноосмотическую мембрану.

На рисунке 2.13 представлена схема ротора фильтрующей сверхцентрифуги с полупроницаемой мембраной на поверхности ротора. Здесь же показаны материальные потоки с концентрациями в них ионов соли на входе и на выходе.


Для математического описания рассматриваемого процесса выделим на высоте z сечения боковой стенки ротора I-I и II-II с расстояниями между ними dz и составим элементарные материальные балансы по основным потокам концентрируемого раствора, фильтрата и концентрациями в них молекул соли на входе и на выходе этих сечений [113]:

$$L = \left(L + \frac{dL}{dz} \cdot dz\right) + dL_p, \qquad (2.47)$$

где $dL_p = G \cdot 2\pi \cdot R_{_H} \cdot dz$;

$$L \cdot x = \left(L + \frac{dL}{dz} \cdot dz\right) \cdot \left(x + \frac{dx}{dz} \cdot dz\right) + x_p \cdot dL_p, \qquad (2.48)$$

где
$$x_p = x \cdot (1 - \varphi)$$
. (2.49)

1 — цилиндрическая стенка ротора с мембраной на его боковой поверхности; 2 — вал; 3 — труба для подвода исходного раствора в нижнюю часть ротора; 4 — емкость для сбора пермеата; 5 — емкость для сбора ретанта; 6 — кольцевой козырек над ротором для приема ретанта из ротора

Рисунок 2.13 — Схема обратноосмотического процесса в сверхцентрифуге с полупроницаемой мембраной на роторе со структурой потока идеального вытеснения по очищаемому раствору

Для расчета удельной производительности G:

$$G = g_w \cdot (1 - p_u / \Delta p) \tag{2.50}$$

необходимо знать зависимость осмотического давления p_u от концентрации x в растворе. При небольших изменениях концентрации соли в начальном растворе $x_{\scriptscriptstyle H}$ и ретанте $x_{\scriptscriptstyle K}$ можно записать [1,4-6]:

$$p_u = a + b \cdot x. \tag{2.51}$$

Так, для хлорида кальция эта зависимость с относительной ошибкой не более 0.9~% может быть МНК аппроксимирована при 0.8~% < x < 3.25~% в виде:

$$p_u = -0.047 + 0.62 \cdot x$$
.

Дифференциальное уравнение (2.47) после интегрирования с граничными условиями $z=0, L=G_{\scriptscriptstyle H}$ принимает вид:

$$L_{p} = G_{H} - L, \qquad (2.52)$$

которое при z = H приводится к интегральному уравнению материального баланса:

$$L_{pk} = G_{H} - L_{k} . {(2.53)}$$

Дифференциальное уравнение (2.47) после алгебраических преобразований с учетом формулы (2.48) преобразуется к виду:

$$\frac{dx}{x \cdot dz} = -\varphi \cdot \frac{dL}{L \cdot dz},$$

и после интегрирования по параметру с учетом граничного условия $z=0,\,L=G_{\scriptscriptstyle H}$ приводит к зависимости:

$$L = G_{\scriptscriptstyle H} \cdot \left(\frac{x_{\scriptscriptstyle H}}{x}\right)^{1/\varphi} \,, \tag{2.54}$$

которую с учетом формулы (2.52) можно представить следующим образом:

$$L_{p} = G_{H} \cdot \left[1 - \left(\frac{X_{H}}{X} \right)^{1/\varphi} \right] \tag{2.55}$$

или в дифференциальном виде:

$$dL_p = \frac{1}{\varphi} \cdot G_{\scriptscriptstyle H} \cdot x_{\scriptscriptstyle H}^{1/\varphi} \cdot \frac{dx}{x_{\scriptscriptstyle H}^{1+1/\varphi}}.$$

С другой стороны дифференциальный расход пермеата dL_p между сечениями I-I и II-II высотой dz можно записать в виде (рисунок 1):

$$dL_{p} = 2\pi \cdot R_{H} \cdot g_{W} \cdot \left(1 - \frac{a + b \cdot x}{\Delta p}\right) \cdot dz.$$

Приравнивая правые части последних двух уравнений и разделяя переменные получаем:

$$\frac{dx}{x^{1+\frac{1}{\varphi}}\cdot (1-B\cdot x)} = C\cdot dz.$$

Так как истинная селективность $\varphi \approx 1$, то интеграл $\frac{dx}{x^2 \cdot (1-B \cdot x)}$ имеет аналитическое решение [7]. Тогда с учетом граничного условия z=0, $x=x_{H}$ зависимость текущей концентрации x в ретанте от координаты высоты ротора z принимает вид:

$$z = A \cdot \left(\frac{1}{x_{_{\scriptscriptstyle H}}} - \frac{1}{x}\right) + B \cdot \ln\left[\left(\frac{A}{x} + B\right) \middle / \left(\frac{A}{x_{_{\scriptscriptstyle H}}} + B\right)\right],$$
где $A = 1 - \frac{a}{\Delta p}$; $B = \frac{b}{\Delta p}$; $C = \frac{2\pi \cdot R_{_{\scriptscriptstyle H}} \cdot g_{_{\scriptscriptstyle W}} \cdot \varphi}{G_{_{\scriptscriptstyle H}} \cdot x_{_{\scriptscriptstyle H}}^{1/\varphi}}$.

При z = H, $x = x_{\kappa}$.

$$L_{pk} = G_{\scriptscriptstyle H} \cdot \left(1 - k^{-1/\varphi}\right).$$

С учетом материального баланса по молекулам и ионам соли их концентрация в пермеате:

$$x_{pk} = \left(G_{\scriptscriptstyle H} \cdot x_{\scriptscriptstyle H} - L_{\scriptscriptstyle k} \cdot x_{\scriptscriptstyle k}\right) / G_{pk} .$$

Были проведены расчеты по исходным и справочным данным для обратноосмотического процесса, приведенным в справочнике [1], но при производительности $G_{\rm H}=0.001~\kappa z/c$. Эти данные приведены в таблице 2.4.

Таблица 2.4 – Исходные и справочные данные и расчетные параметры обратноосмотического процесса в сверхцентрифуге

№	Наименование параметра	Размерность	Обозн а- чение	Величи на
	Исходные дан	ные		
1	Производительность по начальному раствору	кг/с	$G_{\scriptscriptstyle{\mathcal{H}}}$	0,007
2	Начальная концентрация CaCl ₂ растворе	кг/кг, %	$\mathcal{X}_{\mathcal{H}}$	0,8
3	Плотность раствора	кг/м ³	ρ	1023,7
4	Теплота гидратации ионов кальция	кДж/моль	ΔH_1	1616
5	Теплота гидратации ионов хлора	кДж/моль	ΔH_2	352
6	Число ионов кальция в молекуле CaCl ₂	-	n_1	1
7	Число ионов хлора в молекуле CaCl ₂	-	n_2	2
8	Удельная производительность мембраны МГА-100	кг/(м ^{2·} с·МПа)	g 0	0,0014
	Константы мембраны МГА -100	-	a_m	6,7
9	для расчета истинной селективности	-	b_m	3,215
	Коэффициенты уравнения (2.51),	МПа	a	-0,047
10	связывающего осмотическое давление и концентрацию CaCl ₂ в растворе	кг/кг, %	b	0,62
11	Угловая скорость вращения ротора	1/c	ω	3200
12	Радиус ротора сверхцентрифуги	М	$R_{\scriptscriptstyle H}$	0,05
13	Радиус свободной границы раствора внутри ротора	М	R_g	0,04
14	Высота рабочей части ротора	М	Н	1
	Расчетные пара	метры	I	
1	Давление на мембране	МПа	p	4,71
2	Перепад давления на мембране	МПа	dp	4,61
3	Теплота гидратации молекулы CaCl ₂	кДж/моль	ΔH	585,03

Продолжение таблицы 2.4

		I		1 :	
No॒	Наименование параметра	Размернос	Обозн-	Величина	
	Transferre Barrie Hapanie Ipa	ТЬ	ачение	20111 111114	
	Истинная селективность				
4	мембраны МГА-100 для раствора	_	φ	0,994	
	CaCl ₂		Ψ	0,551	
	CaC12	<i>MIT</i>	A	1.01	
5		МПа	A	1,01	
	Коэффициенты уравнения (2.56)	МПа/кг/кг,	В	1,34	
	Коэффициенты уравнения (2.30)	%	D	1,34	
		М	С	0,547	
	Конечная концентрация раствора	/ 0/		1.70	
6	на выходе из ротора	кг/кг, %	\mathcal{X}_k	1,59	
7	Степень концентрирования	_	К	1,988	
8	Расход пермеата	кг/с		$4,9909 \cdot 10^{-4}$	
	*		L_{pk}	,	
9	Расход ретанта	кг/с	L_k	5,0091·10 ⁻⁴	
10	Концентрация молекул и ионов	/ 0/	36 .	6,913·10 ⁻³	
10	CaCl ₂ в пермеата	кг/кг, %	x_{pk}	0,913.10	
	Средняя скорость фильтрации	,		1 77 106	
11	пермеата через мембрану	M/C	v_f	$1,55 \cdot 10^{-6}$	
12	Среднее время пребывания	c	au	3855	
	раствора в роторе				
	Средняя скорость движения				
13	раствора вдоль поверхности	м/с	v_g	$2,59 \cdot 10^{-4}$	
	мембраны		6		
14	Поверхность мембраны	\mathcal{M}^2	F_m	0,314	
	LL	***	- ///	0,01.	

На рисунке 2.14 представлен график зависимости концентрации $CaCl_2$ в растворе по мере его движения вдоль стенки ротора от входа к выходу.

Как видно из этого рисунка с увеличением высоты концентрация молекул и ионов в растворе нарастает нелинейно, хотя до трети высоты ротора носит почти линейный характер. На высоте ротора H=1 и центробежном давлении p=4,71 $M\Pi a$ степень концентрирования практически удваивается, хотя площадь мембраны всего лишь 0,314 m^2 .

Целесообразно проводить сравнение обратноосмотического процесса в сверхцентрифуге с обычным процессом обратного осмоса на мембране рулонного типа по параметру удельной производительности, то есть производительности, отнесенной к единице давления, степени концентрирования и поверхности.

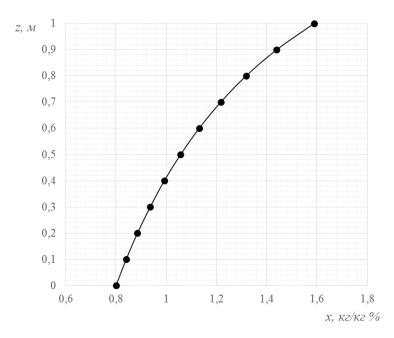


Рисунок 2.14 — Профиль концентраций молекул и ионов в растворе CaCl₂ по высоте ротора сверхцентрифуги в обратноосмотическом процессе

В нашем случае: $G_y = \frac{GH}{\Delta p \cdot K \cdot F} = 3,47 \cdot 10^{-4} \frac{\kappa z}{c \cdot M\Pi a \cdot m^2}$, что почти в 2 раза

меньше, чем для обычного обратноосмотического процесса, приведенного в [1] той рабочим примере ДЛЯ же соли при давлении $\Delta p = 5 \, M\Pi a$, степени концентрирования K = 4,1 и поверхности рулонной мембраны $F \approx 4000 \, \text{м}^2$. Это объясняется большой толщиной слоя раствора $\delta = R_{\scriptscriptstyle H} - R_{\scriptscriptstyle g} = 10 \, \text{мм}$ по сравнению с обратноосмотическим процессом на рулонной мембране. Уже при уменьшении толщины этого слоя δ с 10 мм до 4 мм $G_v = 6.87 \cdot 10^{-4}$ кг/ $(c \cdot M\Pi a \cdot m^2)$ с ростом степени концентрирования до K=2,425. При $\delta=R_{\scriptscriptstyle H}-R_{\scriptscriptstyle g}=2$ мм и рабочем давлении $\Delta p = 0.925 \, M\Pi a$ удельная производительность по раствору возрастает до $G_{_{\mathrm{V}}}=6,66\cdot 10^{-4}\ \kappa \varepsilon/(c\cdot M\Pi a\cdot m^2)$ а степень концентрирования до K=5,14, то есть оба параметра превышают аналогичные параметры типового обратноосмотического процесса на рулонной полупроницаемой мембране.

Из графиков рисунков 2.15 и 2.16 видно, что толщина слоя раствора на стенке ротора сверхцентрифуги также сильно влияет на расход пермеата,

концентрацию в нем молекул и ионов соли, степень концентрирования и перепад давления. В первых трех случаях эта зависимость носит гиперболический характер, а в последнем описывается практически прямой линией. К недостаткам рассмотренного процесса относится малая производительность из-за небольшой поверхности мембраны на поверхности ротора.

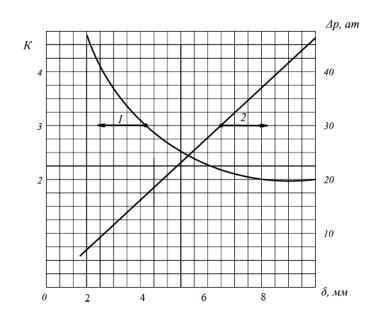


Рисунок 2.15 — Зависимости степень концентрирования раствора (1) и центробежного давления (2) на обратноосмотической мембране сверхцентрифуги от толщины слоя раствора на боковой поверхности ротора ($\omega = 3200\ 1/c$)

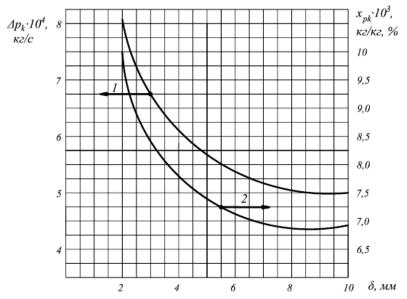


Рисунок 2.16 — Зависимости расхода пермеата и концентрации в нем молекул и ионов $CaCl_2$ от толщины очищаемого раствора на поверхности ротора сверхцентрифуги в обратноосмотическом процессе ($\omega = 3200\ 1/c$)

Таким образом, обратноосмотический процесс в центробежном поле сверхцентрифуги позволяет создавать необходимое рабочее давление, обеспечивающее высокую степень концентрирования раствора и удельную производительность, превышающие аналогические технологические показателя типового процесса обратного осмоса на полупроницаемой мембране, но при толщине слоя раствора $\delta = 2 \div 3$ мм.

2.5 Алгоритм для расчета обратноосмотического процесса в фильтрующих сверхцентрифугах с учетом продольной диффузии

На рисунке 2.18 представлена схема обратноосмотического процесса в сверхцентрифуге, учитывающего продольную диффузию в очищаемом растворе. Здесь показаны материальные потоки с концентрациями в них молекул и ионов на входе и на выходе.

Для математического моделирования обратноосмотического процесса выделим на высоте z два сечения боковой стенки ротора I-I и II-II с расстояниями между ними dz и составим элементарные материальные балансы по основным потокам ретанта и пермеата соли на входе и на выходе этих сечений [112]:

$$L = \left(L + \frac{dL}{dz} \cdot dz\right) + dL_p, \qquad (2.58)$$

где
$$dL_p = G \cdot 2\pi \cdot R_{_H} \cdot dz$$
 , (2.59)

а удельная производительность [1]:

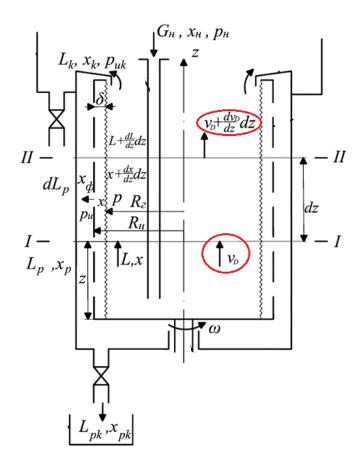
$$G = g_0 \cdot (1 - p_u / \Delta p). \tag{2.60}$$

При небольших изменениях концентрации соли в ретанте зависимость осмотического давления от концентрации, которая задается в виде таблицы [1], можно саппросимировать МНК линейным уравнением:

$$p_u = a + b \cdot x. \tag{2.61}$$

Так, для хлорида кальция эта зависимость с относительной ошибкой менее 1%, коэффициенты a, b имеют численные значения:

$$a = -0.047$$
; $b = 0.62$; $0.8 \% < x < 3.25 \%$.


После алгебраических образований и интегрирования дифференциальное уравнение (2.58) с учетом граничного условия:

$$z = 0, L = G_{H}$$
 (2.62)

принимает вид:

$$L = G_{\scriptscriptstyle H} - L_{\scriptscriptstyle p} \,, \tag{2.63}$$

и при
$$z = H$$
, $L_k = G_{\scriptscriptstyle H} - L_{pk}$. (2.64)

1 — цилиндрическая стенка ротора с мембраной на его боковой поверхности; 2 — вал; 3 — труба для подвода исходного раствора в нижнюю часть ротора; 4 — емкость для сбора пермеата; 5 — емкость для сбора ретанта; 6 — кольцевой козырек над ротором для приема ретанта из ротора

Рисунок 2.17 — Схема сверхцентрифуги с полупроницаемой мембраной на роторе для обратноосмотического процесса разделения (в овалах выделены параметры связанные с продольной диффузии)

Для выделенных сечений I-I и II-II составим элементарный материальный баланс по молекулам и ионам соли:

$$L \cdot x + v_{D} \cdot \rho \cdot \pi \cdot \left(R_{H}^{2} - R_{e}^{2}\right) = \left(L + \frac{dL}{dz} \cdot dz\right) \cdot \left(x + \frac{dx}{dz} \cdot dz\right) + x_{\phi} \cdot dL_{p} + \left(v_{D} + \frac{dv_{D}}{dz} \cdot dz\right) \cdot \rho \cdot \pi \cdot \left(R_{H}^{2} - R_{e}^{2}\right)$$

$$(2.65)$$

где x_{ϕ} — концентрация молекул и ионов, проскакивающих в пермеате на высоте z, которая определяется по формуле:

$$x_{\phi} = x \cdot (1 - \varphi) . \tag{2.66}$$

Дифференциальное уравнение (2.65) после алгебраических преобразований с учетом формул (2.58) и (2.57) определяется в виде:

$$L \cdot \frac{dx}{dz} + \varphi \cdot x \cdot \frac{dL}{dz} + \rho \cdot \pi \cdot \left(R_{_{H}}^{2} - R_{_{c}}^{2}\right) \cdot \frac{dv_{_{D}}}{dz} = 0.$$
 (2.67)

По аналогии с первым законом Фика для молекулярной диффузии запишем уравнение скорости для продольной диффузии в виде [1]:

$$v_D = -D_l \cdot \frac{dx}{dz} \ . \tag{2.68}$$

Тогда преобразованное дифференциальное уравнение (2.67) становится дифференциальным уравнением второго порядка:

$$L \cdot \frac{dx}{dz} + \varphi \cdot x \cdot \frac{dL}{dz} - \rho \cdot \pi \cdot \left(R_{H}^{2} - R_{z}^{2}\right) \cdot D_{l} \frac{d^{2}x}{dz^{2}} = 0.$$

Разделим и умножим последний член уравнения в левой части на $G_{\!\scriptscriptstyle H}$ и с учетом того, что число Пекле продольной диффузии $Pe_l = \frac{v_H \cdot H}{D_p}$, а безразмерная

координата высоты $Z = \frac{z}{H}$ получаем:

$$L \cdot \frac{dx}{dZ} + \varphi \cdot x \cdot \frac{dL}{dZ} = \frac{G_{_{\scriptscriptstyle H}}}{Pe_{_{\scriptscriptstyle I}}} \cdot \frac{d^2x}{dZ^2} \ . \tag{2.69}$$

Отличие получаемого безразмерного числа Pe_l от известных связано с тем, что оно отнесено к начальной скорости пермеата при его расходе $L=G_{\!\scriptscriptstyle H}$, то есть для Z=0.

Если обозначить градиент:

$$gr = \frac{dx}{dZ}$$

и перевести уравнение (2.69) в численный вид, то можно получить расчетное выражение:

$$L_{i} \cdot gr_{i} - \varphi \cdot x_{i} \cdot \frac{\Delta L_{i}}{\Delta Z} = \frac{G_{H}}{Pe_{I}} \cdot \frac{\left(gr_{i+1} - gr_{i}\right)}{\Delta Z}.$$
 (2.70)

Тогда градиент последующей итерации:

$$gr_{i+1} = gr_i + \frac{Pe_l}{G_u} \cdot \left(L_i \cdot gr_i \cdot \Delta Z + \varphi \cdot x_i \cdot \Delta L_i \right), \tag{2.71}$$

где $\Delta L_i = -2\pi \cdot R_{_H} \cdot g_{_0} \cdot \left(1 - \frac{a + b \cdot x_{_i}}{\Delta p}\right) \cdot \Delta Z \cdot H$ - массовый расход фильтрата на

безразмерной высоте Z при концентрации молекул и ионов в растворе x_i , соответствующий его уменьшению в растворе над мембраной.

Известное граничное условие диффузионной модели (2.69) для Z=0 имеет вид [1]:

$$x_{H} = x_{ex} - \frac{1}{Pe_{I}} \cdot \left(\frac{dx_{ex}}{dZ}\right). \tag{2.72}$$

После разделения переменных и интегрирования в пределах от x_{ex} до x_{κ} получаем:

$$\int_{x_{ex}}^{x_k} \frac{dx_{ex}}{x_{ex} - x_{_H}} = \int_{0}^{1} Pe_l \cdot dZ \quad u \pi u$$

$$\ln \left(\frac{x_k - x_{_H}}{x_{ex} - x_{_H}} \right) = Pe_l.$$
 Тогда $x_{k3} = x_{_H} + (x_{ex} - x_{_H}) \exp(Pe_l)$. (2.73)

Схема разработанного алгоритма инженерного анализа проектного решения мембранных аппаратов для обратноосмотического процесса представлена на рисунке 2.18.

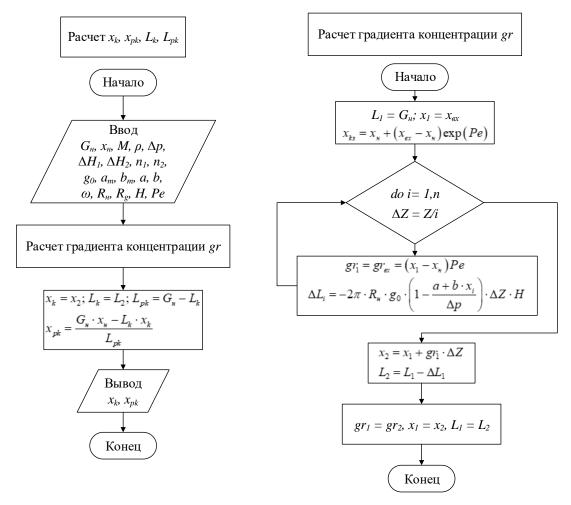


Рисунок 2.18 - Блок-схема алгоритма расчета обратноосмотического процесса в центробежном поле с учетом продольной диффузии

Алгоритм расчетов по уравнениям (2.72) и (2.73) может быть следующим:

- 1. Разбиваем всю безразмерную высоту Z=1 на n равных интервалов. Тогда $\Delta z=1/n$ и обозначаем $L_I=G_{\it h}$, а $x_I=x_{\it ex}$, где $x_{\it ex}>x_{\it h}-$ характеризует скачок концентрации молекул и ионов на входе за счет продольного перемешивания.
- 2. Исходя из известного граничного условия (2.72) для диффузионной модели структуры потоков [1] определяем градиент на входе:

$$gr_i = gr_{ex} = (x_1 - x_{H})Pe_{l}, i = 1;$$

уменьшение расхода раствора за счет фильтрации на первой итерации по уравнению (2.73):

$$\Delta L_i = -2\pi \cdot R_{_H} \cdot g_{_0} \cdot \left(1 - \frac{a + b \cdot x_{_i}}{\Delta p}\right) \cdot \Delta Z \cdot H ;$$

градиент концентрации на выходе после первой итерации по уравнению (2.72):

$$gr_2 = gr_i + \frac{Pe_l}{G_u} \cdot (L_i \cdot gr_i \cdot \Delta Z + \varphi \cdot x_i \cdot \Delta L_i);$$

концентрацию и расход раствора на выходе после первой итерации:

$$x_2 = x_1 + gr_1 \cdot \Delta Z;$$

$$L_2 = L_1 - \Delta L_1.$$

3. Делаем переадресовки, заменяя полученные численные параметры на выходе $gr_1=gr_2, x_1=x_2, L_1=L_2$ и повторяем расчеты по формулам пункта 2 n раз, то есть до Z=1, получаем:

$$\begin{split} x_k &= x_2; \, L_k = L_2; \, L_{pk} = G_{\scriptscriptstyle H} - L_k; \\ x_{pk} &= \frac{G_{\scriptscriptstyle H} \cdot x_{\scriptscriptstyle H} - L_k \cdot x_k}{L_{pk}} \ , \end{split}$$

то есть основные технологические параметры на выходе из ротора сверхцентрифуги.

4. Сравнивает x_{κ} , полученное для заданного числа Pe_{l} при рассчитанном gr_{ex} , со значением $x_{\kappa 3}$, рассчитанным по уравнению (2.71). Если они получаются равными с заданной точностью, расчеты прекращаем, если нет увеличивает x_{ex} по сравнению с его предыдущим значением и расчеты по пунктам 2 и 3 повторяем до $x_{\kappa} \approx x_{\kappa 3}$.

Рассмотрим случай идеального вытеснения, когда $Pe_l \to \infty$ ($D_l \to 0$).

В этом случае дифференциальное уравнение (2.69) принимает вид дифференциального уравнения первого порядка:

$$L \cdot \frac{dx}{dz} + \varphi \cdot x \cdot \frac{dL}{dZ} = 0. \tag{2.74}$$

Так как $\phi \approx 1$, то последнее дифференциальное уравнение имеет аналитическое решение с учетом граничного условия на входе:

$$L_{x} = G_{\mu} \cdot x_{\mu}$$
.

В дифференциальном виде $dL = -dL_p$,

тогда
$$dL = -2\pi \cdot R_{_H} \cdot g_{_0} \cdot \left(1 - \frac{a + b \cdot x}{\Delta p}\right) \cdot dz$$
,

и уравнение (2.74) с учетом сделанных математических выкладок после разделения переменных приобретает вид:

$$\frac{dx}{x^2 \cdot \left[\left(1 - \frac{a}{\Delta p} \right) - \frac{b}{\Delta p} x \right]} = \frac{2\pi \cdot R_{_{\!H}} \cdot g_{_0} \cdot \varphi}{G_{_{\!H}} \cdot x_{_{\!H}}} dz.$$

Последнее дифференциальное уравнение имеет аналитическое решение:

$$-\frac{1}{\left(1-\frac{a}{\Delta p}\right)^{2}}\cdot\left[\frac{1-\frac{a}{\Delta p}-\frac{b}{\Delta p}\cdot x}{x}+\frac{b}{\Delta p}\cdot \ln\left|\frac{1-\frac{a}{\Delta p}-\frac{b}{\Delta p}\cdot x}{x}\right|\right]=P+\frac{2\pi\cdot R_{_{\!H}}\cdot g_{_{0}}\cdot \varphi}{G_{_{\!H}}\cdot x_{_{\!H}}}\cdot z\ ,$$

где P – постоянная интегрирования,

которое приводит к зависимости z=z(x) с учетом граничных условий: $z=0, x=x_{\rm H} u z=H, x=x_{\rm K}.$

Остальные формулы для режима идеального вытеснения, вытекающие из интегральных уравнений материального баланса, известны [1]:

$$L_{k} = G_{k} \cdot \left(\frac{x_{k}}{x_{k}}\right)^{1/\varphi};$$

$$L_{pk} = G_{k} \cdot \left[1 - \left(\frac{x_{k}}{x_{k}}\right)^{1/\varphi}\right];$$

$$x_{pk} = \left(G_{k} \cdot x_{k} - L_{k} \cdot x_{k}\right) / L_{pk}.$$

$$(2.75)$$

Рассмотрим режим идеального смешения, когда $Pe_l \to 0$ ($D_l \to \infty$). В этом случае $x = x_\kappa$ при любой высоте z, $x_{cp} = (1 - \varphi) \cdot x_{c\kappa}$ (индекс с обозначает рассматриваемую модель идеального смешения).

Тогда согласно уравнению (2.61) осмотическое давление будет постоянно по высоте:

$$p_u = a + b \cdot x_{ck}.$$

Расход пермеата через боковую поверхность ротора

$$L_{cp} = 2\pi \cdot R_{_{\scriptscriptstyle H}} \cdot H \cdot g_{_{\scriptscriptstyle 0}} \cdot \left(1 - \frac{p_{_{\scriptscriptstyle U}}}{\Delta p}\right) \cdot \left(1 - \varphi\right),$$

а ретанта: $L_{c} = G_{H} - L_{cp}$.

Из системы уравнений общего материального баланса по молекулам и ионам растворенного вещества, а также по фильтруемому через мембрану ретанту получаем систему уравнений:

$$G_{_{\!\scriptscriptstyle H}} = L_{_{\!cp}} + L_{_{\!c}};$$
 $G_{_{\!\scriptscriptstyle H}} \cdot x_{_{\!\scriptscriptstyle H}} = L_{_{\!cp}} \cdot (1 - \varphi) \cdot x_{_{\!ck}} + L_{_{\!c}} \cdot x_{_{\!ck}};$
 $L_{_{\!cp}} = 2\pi \cdot R_{_{_{\!\scriptscriptstyle H}}} \cdot H \cdot g_{_0} \cdot \left(1 - \frac{a + b \cdot x_{_{\!ck}}}{\Delta p}\right).$

Из первых двух уравнений последней системы получаем с учетом уравнения (2.75):

$$G_{H} \cdot (x_{H} - x_{ck}) = L_{cp} \cdot \varphi \cdot x_{ck}.$$

Подставляя в последнее уравнение значение L_{cp} из третьего уравнения выприведенной системы получаем алгебраическое уравнение:

$$G_{H} \cdot \left(x_{H} - x_{ck}\right) = \left(2\pi \cdot R_{H} \cdot H \cdot g_{0}\right) \cdot \left(1 - \frac{a}{\Delta p}\right) \cdot \varphi \cdot x_{ck} - \left(2\pi \cdot R_{H} \cdot H \cdot g_{0}\right) \cdot \varphi \cdot \frac{b}{\Delta p} \cdot x_{ck}^{2},$$

решение которого имеет вид:

$$x_{ck} = -\frac{B_c}{2 \cdot A_c} + \sqrt{\left(\frac{B_c}{2 \cdot A_c}\right)^2 + \frac{G_{\mu} \cdot x_{\mu}}{A_c}},$$
 (2.76)

где
$$A_c = \frac{2\pi \cdot R_{_{\!\mathit{H}}} \cdot H \cdot g_{_0} \cdot \varphi \cdot b}{\Delta p}$$
 ; $B_c = \frac{G_{_{\!\mathit{H}}} - 2\pi \cdot R_{_{\!\mathit{H}}} \cdot H \cdot g_{_0} \cdot \varphi \cdot \left(1 - \frac{a}{\Delta p}\right)}{A_c}$.

Таблица 2.5 – Исходные и справочные данные и расчетные параметры обратноосмотического процесса в сверхцентрифуге

№	Наименование параметра	Размер- ность	Обоз- начен ие	Величина параметра
		Исходные да	иные	
1	Производительность по исходному раствору CaCl ₂	кг/с	$G_{\scriptscriptstyle{H}}$	0,01
2	Начальная концентрация на входе CaCl ₂	$\frac{\kappa_{\mathcal{E}}}{\kappa_{\mathcal{E}}}A$	$\mathcal{X}_{\mathcal{H}}$	0,8
3	Молекулярная масса растворенной соли CaCl ₂	<u>кгА</u> кмоль	M	111
4	Плотность раствора	кг/м ³	ρ	1023,7
5	Теплота гидратации катиона Са ⁺⁺	$\frac{\kappa \mathcal{Д} \mathcal{H}}{\mathit{моль}}$	ΔH_1	1616
6	Теплота гидратации аниона Cl ⁻	$\frac{\kappa \mathcal{Д} \mathcal{H}}{\mathcal{M} \mathcal{O} \mathcal{N} \mathcal{b}}$	ΔH_2	352
7	Число ионов кальция в молекуле CaCl ₂	-	n_1	1
8	Число ионов хлора в молекуле CaCl ₂	-	n_2	2
9	Удельная производительность по чистой воде мембраны	$\frac{\kappa \varepsilon}{M^2 \cdot c}$	go	0,0014
10	Константы селективности мембраны	-	a_m	6,7
10	МГА -100	-	b_m	3,215
11	Константы уравнения зависимости	МПа	а	-0,047
11	осмотического давления от концентрации	МПа/ кгА кг	b	0,62

Продолжение таблицы 2.5

				-
№	Наименование параметра	Размер- ность	Обоз- начени е	Величина параметра
12	Угловая скорость вращения ротора	1/c	ω	3200
13	Радиус ротора сверхцентрифуги	М	$R_{\scriptscriptstyle H}$	0,05
14	Радиус свободной границы раствора внутри ротора	М	R_g	0,04
15	Высота рабочей части ротора	М	Н	1
	Общие р	расчетны	е парамен	пры
1	Перепад давления, под которым идет обратноосмотический процесс	МПа	Δp	4,616
2	Теплота гидратации молекулы CaCl ₂	<u>кДж</u> моль	ΔH	585
3	Истинная селективность мембраны МГА-100	-	φ	0,994
P	Расчетные параметры для с	структур	ы потока	идеального вытеснения
	Коэффициенты	-	A	1,01
1	интегрального уравнения	-	В	0,134
1	зависимости высоты от концентрации в ретанте	-	С	0,547
2	Концентрация в ретанте на выходе из ротора	$\frac{\kappa \epsilon A}{\kappa \epsilon}$,%	χ_{ke}	1,59
3	Степень концентрирования	-	K_{e}	2
4	Производительность по пермеату	кг/с	L_{pk}	$4,99 \cdot 10^{-4}$
5	Производительность по ретанту	кг/с	L_k	5,01·10 ⁻⁴
6	Конечная концентрация в пермеате на выходе	кгА/кг, %	\mathcal{X}_{pk}	6,91·10 ⁻⁴
Pa	асчетные параметры для да	иффузион	ной стру	ктуры потоков $Pe_l = 0.01$
1	Концентрация исходного раствора на входе	$\frac{\kappa \epsilon A}{\kappa \epsilon}$,%	χ_{ex}	1,264

Продолжение таблицы 2.5

№	Наименование параметра	Размер-	Обоз- начение	Величина параметра		
2	Градиент концентрации исходного раствора на входе (по безразмерной высоте)	$\frac{\kappa \epsilon A}{\kappa \epsilon}$,%	g _{ex}	4,64·10 ⁻³		
3	Расход ретанта	кг/с	L_k	6,307 · 10 ⁻⁴		
4	Степень концентрирования	-	K	1,583		
5	Расход пермеата	кг/с	L_{pk}	3,69·10 ⁻⁴		
6	Концентрация молекул и ионов CaCl ₂ в пермеате	$\frac{\kappa \epsilon A}{\kappa \epsilon}$,%	x_{pk}	1,765·10 ⁻³		
7	Концентрация в ретанте на выходе	$\frac{\kappa \epsilon A}{\kappa \epsilon}$,%	x_k	1,267		
I	Расчетные параметры для стр	уктуры потоков идеального смешения				
	Vandammanari	-	A_c	5,88·10 ⁻⁵		
1	Коэффициенты уравнения материального баланса	-	B_c	9,6		
	материального баланса	-	C_c	13,63		
2	Конечная концентрация молекул и ионов CaCl ₂ в ретанте	$\frac{\kappa \epsilon A}{\kappa \epsilon}$,%	x_{ck}	1,256		
3	Расход ретанта	кг/с	L_c	3,7·10 ⁻⁴		
4	Расход пермеата	кг/с	L_{cp}	6,3·10 ⁻⁴		
5	Конечная концентрация молекул и ионов CaCl ₂ в пермеате	$\frac{\kappa \epsilon A}{\kappa \epsilon}$,%	x_{cp}	7,85·10 ⁻³		
6	Степень концентрирования раствора	-	K_c	1,57		

Как видно из результатов расчетов, представленных в таблице 2.5, технологические параметры для диффузионной модели структуры потоков занимают промежуточное положение между аналогичными параметрами, рассчитанными для моделей идеального вытеснения и перемешивания.

Малые значения Pe_l (в примере $Pe_l = 0.01$) соответствуют слишком низким производительностям сверхцентрифуги (в тысячу и более раз по сравнению с рулонными мембранами, у которых соответственно во столько же раз больше площадь поверхности), так как при численных расчетах по уравнению (2.74) градиенты gr_2 , становятся отрицательными, что противоречит модели – концентрации x_2 в ретанте должны монотонно расти.

Таким образом, учет продольной диффузии, когда $0 < Pe_l < \infty$ $(\infty > D_l > 0)$ в структуре потока очищаемого раствора позволяет рассчитывать по рассмотренному выше алгоритму технологические параметры обратноосмотического процесса, проходящего центробежном поле сверхцентрифуги. Однако преимущество проведения обратноосмотического процесса в сверхцентрифугах, связанное с отсутствием насосов высокого давления, нивелируется низкой производительностью и степенью концентрирования из-за малой поверхности мембраны.

выводы к второй главе

- 1. Разработаны математическое и методическое обеспечения САПР мембранных аппаратов с построением и исследованием моделей, алгоритмов и методов синтеза их проектных решений, обеспечивающих повышение точности расчетов поверхности мембраны на 17% и степени очистки пермеата на 45% за счет описания структуры потока диффузионной моделью вместо стандартных идеальных моделей вытеснения и смешения.
- 2. Разработана методика компьютерной поддержки процесса автоматизированного проектирования мембранных аппаратов для процессов ультрафильтрации и обратного осмоса в центробежном поле и с учетом продольной диффузии, что позволяет увеличить точность расчета технологических и геометрических параметров при автоматизированном проектировании мембранных аппаратов:
- а) общим недостатком пленочых мембранных процессов в центробежном поле является малая поверхность мембраны, равная поверхности перфорированного ротора. Это приводит к малой производительности и кратности концентрирования $K \le 1,1$ (при обычных мембранных процессах $K = 4 \div 10$). Однако степень очистки например, раствора ациалазы достигает S = 500 раз;
- б) увеличение числа оборотов с типовых 1000 *об/мин* до 3000 *об/мин* и соответственно центробежного давления с 4-5 *атм* до 16 *атм* приводит к росту

производительности в 4 раза и более, но степень очистки пермеата снижается с 500 раз до 450;

- в) необходимо при росте числа оборотов свыше 1000 *об/мин* перейти от полимерных проницаемых пленочных мембран к металлокерамическим или нуклепористым, иначе сжимаемость микропор под давлением приводит к потере фильтрационных свойств;
- г) в обратноосмотическом процессе большое влияние на технологические параметры оказывает толщина слоя очищаемого раствора на роторе так при росте толщины с 2 *мм* до 10 *мм* производительность по пермеату падает с $8\cdot10^{-4}$ кг/с до $5\cdot10^{-4}$ кг/с, то есть на 20%, а чистота пермеата увеличивается на 32%, при этом давление возрастает с 8,9 *ам* до 46,5 *ам*.

Глава III. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА УЛЬТРАФИЛЬТРАЦИИ НА ПОЛУПРОНИЦАЕМОЙ МЕМБРАНЕ

Известный типовой метод наименьших квадратов (МНК) предполагает возможность линеаризации исходного аналитического уравнения линейным алгебраическим уравнениям [62]:

$$y_t = b + a \cdot x,\tag{3.1}$$

и определением его коэффициентов, исходя из условия:

$$U = \sum_{i=1}^{m} (b + a \cdot x_i - y_i)^2 \rightarrow \min.$$
(3.2)

Однако затем обычно для определения точности аппроксимации оцениваются локальные относительные отклонения:

$$\delta_i = (b + a \cdot x_i - y_i)/y_i \tag{3.3}$$

как наибольшие, так и средние по абсолютной величине и по ним делается вывод о возможности описания заданной экспериментальной или табличной зависимости выбранным аналитическим уравнением. Поэтому предлагается вместо МНК при минимизации функции U на основании выражения (3.2) применять МНОК с минимизацией функции:

$$U_{1} = \sum_{i=1}^{m} \left[\left(b + a \cdot x_{i} - y_{i} \right) / y_{i} \right]^{2} \to \min$$
 (3.4)

и сравнить локальные относительные отклонения теоретических значений от экспериментальных или табличных обоими методами по уравнению (3.3).

Для примера в таблице 3.1 приведены табличные значения вязкости водноглицеринового раствора от массовой концентрации глицерина (строки 1÷3).

Таблица 3.1 — Заданные табличная и расчетная зависимости вязкости водноглицеринового раствора от массовой концентрации глицерина

Наименование параметра		Велич	чина пара	метра	
1. Номер точки	1	2	3	4	5
2. Концентрация глицерина в растворе, кгА/кг(B+A)	0,1	0,2	0,3	0,4	0,5
3. Табличное значение вязкости раствора, мПа·с (сПз)	1,311	1,769	2,501	3,75	6,05
4. Значения вязкости раствора, рассчитанные МНК, мПа·с	1,085	1,733	2,768	4,422	7,065
5. Относительные отклонения расчетных значений вязкости раствора от табличных, % (МНК)	-17,96	-2,05	10,69	17,93	16,78
6. Значения вязкости раствора, рассчитанные МНОК, мПа·с	1,286	1,887	2,767	4,095	5,953
7. Относительные отклонения расчетных значений вязкости раствора от табличных, % (МНОК)	-1,89	6,65	10,64	8,23	-1,6

Уравнения для расчета коэффициентов a и b уравнения (3.1) для функции минимизации U МНК по формуле (3.2) общеизвестны.

Уравнения для расчета этих коэффициентов для функции минимизации U_I МНОК по формуле (3.3) приведены ниже [105]:

$$Z = \sum_{i=1}^{m} \left(\frac{1}{y_{i}}\right)^{2} \cdot \sum_{i=1}^{m} \left(\frac{x_{i}}{y_{i}}\right)^{2} - \left[\sum_{i=1}^{m} \left(\frac{x_{i}}{y_{i}^{2}}\right)\right]^{2};$$

$$a = \frac{\sum_{i=1}^{m} \left(\frac{1}{y_{i}}\right)^{2} \cdot \sum_{i=1}^{m} \left(\frac{x_{i}}{y_{i}}\right) - \sum_{i=1}^{m} \left(\frac{1}{y_{i}}\right) \cdot \sum_{i=1}^{m} \left(\frac{x_{i}}{y_{i}^{2}}\right)}{Z};$$

$$b = \frac{\sum_{i=1}^{m} \left(\frac{1}{y_{i}}\right) \cdot \sum_{i=1}^{m} \left(\frac{x_{i}}{y_{i}}\right)^{2} - \sum_{i=1}^{m} \left(\frac{x_{i}}{y_{i}}\right) \cdot \sum_{i=1}^{m} \left(\frac{x_{i}}{y_{i}^{2}}\right)}{Z}.$$

Необходимость описания вязкости водноглицеринового раствора непрерывной функцией была связана экспериментальными cнашими исследованиями по ультрафильтрации этого раствора на полупроницаемой мембране УАМ-150 со степенью концентрирования ретанта до K=5. При начальной концентрации исходного водноглицеринового раствора CH = 0.1κεA/κε(A+B), конечная концентрация ретанта Cκ = 0.5 κεA/κε(A+B), что и учтено в таблице 3.1.

Коэффициенты a и b, рассчитанные по уравнениям, соответствующим МНК и уравнениям системы (4) для МНОК, приведены ниже:

MHK:
$$\begin{cases} a = 4,684 \\ b = -0,387 \end{cases}$$
; MHOK:
$$\begin{cases} a = 3,83 \\ b = -0,131 \end{cases}$$

При этом аналитическая формула имеет вид:

$$\mu = K \cdot n^c \tag{3.5}$$

Тогда для

MHK:
$$\begin{cases} K = 0,772 \\ n = 66,9 \end{cases}$$
; MHOK:
$$\begin{cases} K = 0,898 \\ n = 38,32 \end{cases}$$
.

где μ - вязкость водоглицеринового раствора, $M\Pi a \cdot c$;

K и n — коэффициенты.

Надо отметить, что попытка описать табличные значения вязкости водноглицеринового раствора от концентрации глицерина (строчки 2 и 3 таблицы

3.1) давали локальные относительные отклонения в 100 и более процентов для степенной функции $\mu = K \cdot c^n$.

Уравнение (3.5) при логарифмировании обеих его частей линеаризуется:

$$\ln(\mu) = \ln(K) + c \cdot \ln(n) . \tag{3.6}$$

Тогда с учетом линейной зависимости (1):

$$x = c; y_t = \ln(\mu); b = \ln(K); a = \ln(n)$$

Как видно из результатов расчетов, приведенных в таблице 3.1 (строчки 5 и 7), средние относительные отклонения теоретических значений вязкости от заданных табличных составляют 12,9% в МНК против 5,8% в МНОК, то есть МНОК снижает их по сравнению МНК в 2,23 раза, при этом 4 локальных значения относительных отклонений в МНК больше 10%, а в МНОК только одно из 5. Наибольшее относительное отклонение в МНК составляет 17,93%, а в МНОК – 10,64%, то есть последнее в 1,68 раза меньше.

Таким образом, применение МНОК для аппроксимации табличных или экспериментальных данных с определением коэффициентов линеаризированного уравнения (3.1) по сравнению с МНК позволяет снизить средние значения относительных отклонений теоретических значений аппроксимирующей функции от экспериментальных или табличных в 2 и более раз, а наибольшие относительные отношения уменьшить на 60-70% [105].

Для проведения корреляционного анализа, связанного с определением воспроизводимости параллельных опытов и сравнением расчетного критерия Кохрена с его табличным значением, но в отсутствии самих параллельных опытов, можно воспользоваться приемом, приведенным в алгоритме и программе [118].

На рисунке 3.1 представлен фрагмент, описывающий определение условных численных значений параллельных опытов в основе которого лежит известный метод линейной кусочной аппроксимации на интервале и которые определяются по формуле:

$$\mu_{n(i)} = \frac{\mu_{(i-1)} + \mu_{(i+1)}}{2}.$$
(3.7)

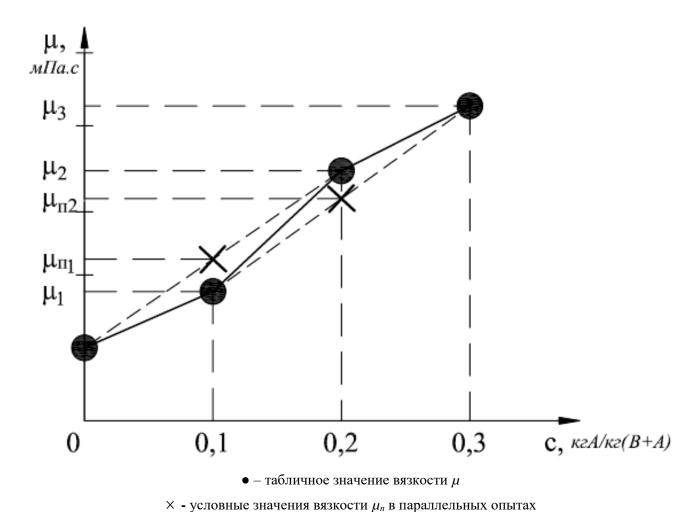


Рисунок 3.1 – Графики зависимости вязкости водноглицеринового раствора от

Рисунок 3.1 – 1 рафики зависимости вязкости водноглицеринового раствора от массовой концентрации глицерина

Табличное значение вязкости для c=0, $\mu=1$ кПа в основной части расчетов не используется, так как $ln(\mu)=0$ и относительная ошибка для этой точки не рассчитывается (см. таблицу 1 и формулу (6)).

В таблице 3.2 приведены условные расчетные значения вязкости раствора в параллельных опытов, рассчитанных по формуле (3.7), а так же средние значения, рассчитанные по формуле:

$$\mu_{c(i)} = \frac{\mu_i + \mu_{n(i)}}{2}.$$
(3.8)

Таблица 3.2 — Заданные табличные значения и условные значения вязкости раствора глицерина в параллельных опытах, рассчитанные по формуле (3.7), средние значения вязкости раствора и относительные отклонения

$N_{\underline{0}}$	Наименование параметра	Величина				
1	Номер точки	1	2	3	4	5
2	Концентрация глицерина в растворе, $\kappa \varepsilon A/\kappa \varepsilon (A+B)$	0,1	0,2	0,3	0,4	0,5
3	Табличное значение вязкости раствора,	1,311	1,76 9	3,75	6,05	
4	Условное значение вязкости раствора, рассчитанное по формуле (7), $M\Pi a \cdot c$	1,36	1,90 6	2,76	4,27 6	7,355
5	Среднее значение вязкости раствора, рассчитанное по формуле (8), $M\Pi a \cdot c$	1,336	1,83 7	2,63	4,01	6,703
6	Значения вязкости раствора, рассчитанные МНК, <i>мПа·с</i>	1,188	1,85	2,802	4,49	6,996
7	Относительные отклонения расчетных значений вязкости раствора от средних, % (МНК)	-11,07	0,69	9,59	11,9	4,37
8	Значения вязкости раствора, рассчитанные МНОК, <i>мПа·с</i>	1,317	1,93	2,836	4,16	6,108
9	Относительные отклонения расчетных значений вязкости раствора от средних, % (МНОК)	-1,37	5,19	7,83	3,72	-8,88

Из результатов расчетов, приведенных в таблице 3.2 видно, что наибольшие значения вязкости раствора, рассчитанные МНОК по сравнением с МНК уменьшаются в 1,3 раза, а средние с 7,52% до 5,4%, то есть в 1,4 раза, при этом численные значения коэффициентов К и п аппроксимирующего уравнения (3.5) равны:

для МНК:
$$\begin{cases} K = 0.762 \\ n = 84.194 \end{cases}$$
; для МНОК:
$$\begin{cases} K = 0.897 \\ n = 46.3 \end{cases}$$
.

В таблице 3.3 приведены результаты корреляционного анализа с учетом результатов двух параллельных опытов (Табличных значений вязкости μ_i , условных ее значения $\mu_{n(i)}$ и средних значений $\mu_{c(i)}$).

Таблица 3.3 — Сравнение коэффициентов корреляции, критериев, воспроизводимости в параллельных опытах, адекватности аппроксимирующего уравнения (3.5) экспериментальным данным и значимости коэффициентов этого уравнения, рассчитанных МНК и МНОК (число параллельных опытов, p = 2; число основных опытов N = 5; число коэффициентов уравнения (3.5), m = 2)

		Величина параметра					
No॒	Наименование параметра	МНК	МНОК	Табличное			
		WIIIX	WITOK	значение [1]			
1	Коэффициент корреляции	0,992	0,992	-			
	Воспроизводимость в			0,78			
2	параллельных опытах	0,449	0,449	(Критерий			
	паразыслыных опытах			Кохрена)			
	Адекватность			5,41			
3	аппроксимирующего 1	1,51	1,38	(Критерий			
	уравнения (5)			Фишера)			
	Значимость коэффициентов:			2,57			
4	K	304,8	728,3	(Критерий			
	n	33658	37568	Стьюдента)			

Так как в формулах расчета коэффициента корреляции и воспроизводимости нет сравнения теоретических и заданных значений концентрации, то эти расчеты не зависят от метода МНК или МНОК и численно совпадают.

В формулах расчета адекватности есть сравнение расчетных и заданных значений функции от аргумента [71], так дисперсия адекватности в типовом методе МНК рассчитывается по формуле:

$$S_{ab}^{2} = \frac{m}{N - l} \sum_{i=1}^{N} \left(\mu_{t(i)} - \mu_{c(i)} \right)^{2}, \tag{3.9}$$

где m — число параллельных опытов;

N — число основных опытов;

l – число расчетных параметров в аппроксимирующем уравнении;

 $\mu_{t(i)}$, $\mu_{c(i)}$ — соответственно теоретическое и среднее значение вязкости в параллельных опытах для i точки.

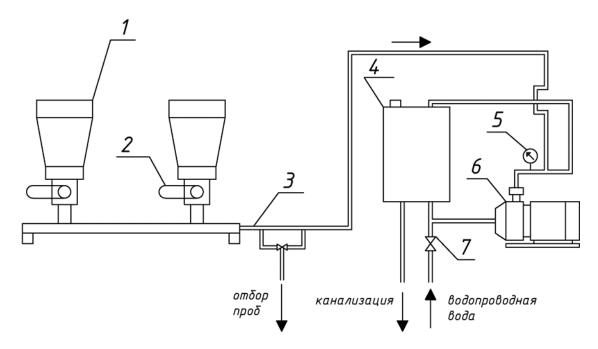
В МНОК считаем дисперсию адекватности по формуле:

$$S_{a\hat{\sigma}}^{2} = \frac{m}{N - l} \sum_{i=1}^{N} \left(\frac{\mu_{t(i)}}{\mu_{c(i)}} - 1 \right)^{2}, \tag{3.10}$$

так как минимизуется сумма квадратов относительных отклонений теоретических значений концентрации от средних экспериментальных ее значений.

Кроме того, теоретические значения вязкости $\mu_{t(i)}$, рассчитанные МНК и МНОК также являются различными, так как коэффициенты аппроксимирующих уравнений K и n численно не равны. Последнее отражается и в проверке значимости этих коэффициентов по критерию Стьюдента.

Как видно из расчетных параметров регрессионного анализа, приведенных в таблице 3.3, при равенстве коэффициентов корреляции и воспроизводимости в параллельных опытах по критерию Кохрена, адекватность аппроксимирующего уравнения (3.5) в МНОК выше, чем при расчетах по типовому МНК (так как адекватность тем выше, чем меньше ее расчетное значение по сравнению с табличным значением критерия Фишера), а значимость коэффициентов К и п в МНОК выше, чем при расчетах по типовому МНК (так как значимость коэффициентов тем выше, чем больше и сильнее их расчетное значение отличается от табличного значения критерия Стьюдента).


Результаты, приведенные в таблице 3.3, подтверждают высокую корреляционную связь r в зависимости вязкости водноглицеринового раствора от концентрации глицерина ($r \to 1$) и воспроизводимость в параллельных опытах (расчетное значение критерия Кохрена Ko = 5,41), тоже касается адекватности аппроксимирующего уравнения (3.5), но здесь уже оба расчетных значения числа Фишера меньше табличного значения. Высока значимость рассчитанных коэффициентов K и n, которые значительно больше для обоих методов табличного числа Стьюдента [124].

Таким образом, хотя расчеты по обоим методам: типовому МНК и рассматриваемому в статье МНОК обеспечивают высокую корреляционную связь, воспроизводимость В параллельных опытах, адекватность И значимость коэффициентов аппроксимирующего уравнения (3.5), МНОК обеспечивает повышение точности расчетов средних и наибольших локальных относительных 30%. 40%. отклонений на средних на повышение адекватности аппроксимирующего уравнения (3.5) на 8,6% (см. строку 2 в таблице 3.3), при этом увеличивается значимость коэффициентов "К" в 2,38 раза, а "n" на 11,6%.

В ходе выполнения экспериментального исследования были получены значения относительной концентрации раствора марганцовокислого калия КМпО₄ в воде от времени при ультрафильтрации, проведена их обработка МНК И МНОК и корреляционный анализ полученных результатов.

3.1 Описание экспериментальной лабораторной установки

Схема экспериментальной лабораторной установки для исследования процесса ультрафильтрации представлена на рисунке 3.2.

1 - фильтровальная ячейка с полупроницаемой ультрафильтрационной мембраной; 2 - кран; 3 - вакуумный шланг; 4 - емкость;

5 - манометр; 6 - электродвигатель; 7 - вентиль

Рисунок 3.2 – Схема экспериментальной установки [73]

Прибор вакуумного фильтрования ПВФ-47 состоит из следующих основных частей: ячейки фильтровальной 1, вакуумной станции, соединительного вакуумного шланга 3.

Ячейка фильтровальная 1 включает в себя: коллектор с основаниями, на верхнем торце которых имеется подложка, на которой размещается фильтрующая мембрана. Краны 2 предназначены для запирания отсасывающего канала воронки. Коллектор имеет опоры, штуцер для присоединения вакуумного шланга 3.

Воронка снабжена пружинным зажимом, посредством которого она крепится на основании.

Вакуумная станция включает в себя эжектор, емкость 4, электродвигатель (насос) 6, основание, кран 7, шланг, манометр 5, штуцер для присоединения при помощи вакуумного шланга 3 к коллектору, шланг для подключения вакуумной станции к водопроводу, шланг для подключения вакуумной станции к канализации.

Эжектор с манометром крепятся к насосной плите посредством двух винтов. Если смотреть спереди на насос, узел эжектора крепится перпендикулярно к электродвигателю, справа.

Выход из эжектора воды осуществляется с помощью шланга ПВХ до ресивера. Подача воды на эжектор от нагнетания насоса осуществляется так же с помощью гибкого шланга ПВХ. Установка сконструирована таким образом, что имеется возможность отбирать пробы пермеата на выходе из фильтровальной ячейки.

3.2 Методика проведения экспериментальных исследований

- 1. При первоначальном подключении прибора производится соединение его частей шлангами. Рекомендуется шланг 3 применять минимальной длины для улучшения эффективности фильтрования. Шланг для спуска жидкости опускают в канализацию или в раковину.
- 2. Проводится заземление корпуса насоса проводом заземления, путем присоединения одного конца под головку болта крепления насоса (либо к болту заземления в клемной коробке электродвигателя насоса), а другого к внешнему заземляющему контуру, имеющемуся в помещении.
- 3. Фильтрование с помощью прибора производится при соблюдении правил стерильности в следующем порядке:
 - приподнимается зажим и снимается воронка с основания;
 - устанавливается на основание мембрана и устанавливается воронка,
 зафиксировав ее зажимом;
 - закрываются краны ячейки фильтровальной и вакуумной станции;
 - отвертывается крышка на емкости и через штуцер под ней заполняется водопроводной водой емкость, насос и магистрали вакуумной станции (до появления воды в шланге). Завертывается крышка на емкости;
 - заливается в воронку проба исследуемой жидкости;

- открывается кран под воронкой с пробой жидкости;
- включается насос;
- производится фильтрация жидкости с периодическим отбором проб;
- по окончании процесса фильтрации закрывается кран под воронкой, после чего выключается насос;
- приподнимается зажим, снимается воронка с основания и извлекается мембрану.

Для раствора марганцовокислого калия, используя графическую зависимость оптической плотности от кратности разбавления исходного раствора, определяют содержание (концентрацию) растворенного компонента в жидкой смеси после фильтрования (в фильтрате – пермеате).

3.3 Методика построения тарировочного графика зависимости оптической плотности раствора от относительной концентрации раствора

Оптическая плотность определялась на фотоколориметре КФК-2 [105].

Устанавливается рабочий светофильтр.

Наливается окрашенный исходный раствор в кювету до метки на кювете и определяется его оптическая плотность. Концентрация исходного раствора принимается равно единице.

Выливается из кюветы половину раствора, наливается дистиллированная вода в него до метки, определяется оптическая плотность. Повторяется разбавление и измерение до тех пор, пока цвет измеряемого раствора в кювете приближаться к прозрачному.

По полученным данным строится тарировочная кривая, откладывая по горизонтальной оси относительную концентрацию исследуемого раствора, а по вертикальной оси – соответствующие значения оптической плотности раствора.

На рисунке 3.3 представлен тарировочный график зависимости оптической плотности раствора от относительной концентрации KMnO₄ в воде.

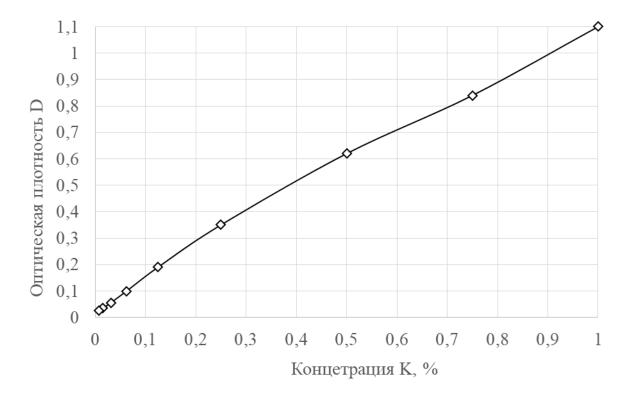


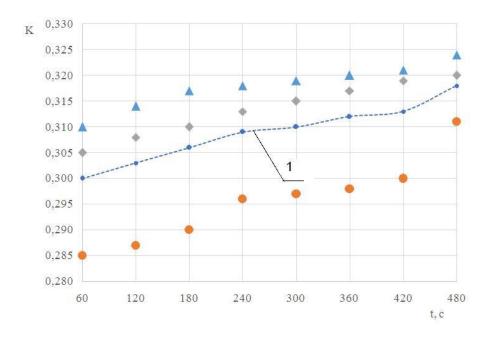
Рисунок 3.3 – Тарировочный график зависимости оптической плотности раствора от относительной концентрации KMnO₄ в воде

3.4 Обработка экспериментальных данных

Средняя концентрация в каждом параллельном опыте определяется по известной формуле:

$$K_c(i) = \frac{K_1(i) + K_2(i) + K_3(i)}{3}.$$

Результаты эксперимента и усредненные значения представлены на рисунке 3.4.


Экспериментальную зависимость можно представить в виде степенного уравнения:

$$K = A \cdot t^B \tag{3.11}$$

или в линеаризированном виде:

$$y = a + b \cdot x, \tag{3.12}$$

где a = ln(A), b = B, y = ln(K), x = ln(t).

▲, ◆, * - экспериментальные данные в параллельных опытах;
 1 – средние значения экспериментальных данных
 Рисунок 3.4 – Экспериментальные данные

3.5 Корреляционный анализ экспериментальных результатов

Результаты расчетов коэффициентов уравнения (3.11) для МНК и МНОК приведены в таблице 3.4.

Таблица 3.4 — Расчетные коэффициенты линейного уравнения зависимости относительной концентрации $KMnO_4$ в воде от рабочего давления по МНК и МНОК

Коэффициенты	МНК	МНОК
a	-1,209	-1,317
b	2,608*10-2	2,627*10-2
A	2,98*10 ⁻¹	2,678*10-1
В	2,608*10-2	2,627*10-2

Значения коэффициентов корреляционного анализа после обработки экспериментальных данных приведены в таблице 3.5.

Как видно из материалов таблице 3.5 для обоих методов расчетов уравнения (3.11) адекватно экспериментальными данными, а коэффициенты а и b этого уравнения значимы, но в МНОК значение критерия Фишера меньше аналогичного его значения, полученного МНК на δ_{ϕ} = - 2,9% [105].

Для коэффициентов a и b это отклонение составляет: $\delta_{ta} = 8,9\%$, $\delta_{tb} = 1,2\%$. То есть даже при небольших изменениях функции y = y(x) МНОК приводит к более точным расчетным параметрам a и b в уравнении (3.12) и соответственно коэффициентов A и B в уравнении (3.11).

Таблица 3.5 – Критерии регрессионного анализа линейного уравнения по МНК и МНОК

	Обозн	Вели парам	Табл ично	
Наименование параметра	ачение	МНОК	МНК	е значе ние
Воспроизводимость экспериментальных данных в параллельных опытах (критерий Кохрена)	G	0,178	0,178	0,515 7
Адекватность уравнения регрессии экспериментальным данным (критерий Фишера)	F	0,0602	0,062	2,74
Значимость коэффициентов уравнения регрессии (критерий Стьюдента) по коэффициенту а по коэффициенту b	St t _a t _b	$t_a=669$ 7 $t_b=133$, 58	t _a =614 9 t _b =132	t _a =2,1 t _b =2,1
Корреляционная связь между функцией и аргументом, определяемая по коэффициенту корреляция	r	0,962	0,962	-

Локальные значения относительных отклонений выходного параметра K от времени (по абсолютной величине) представлены в таблице 3.6.

Таблица 3.6 – Сравнение отклонения теоретических от экспериментальных данных по МНК и МНОК (по абсолютной величине)

δ	1	2	3	4	5	6	7	8*	$ \delta_{cp} $
по МНК, %	0,5434	0,2686	0,4507	0,1156	0,2675	0,3145	0,1829	- 1,046*	0,3986
по МНОК, %	0,5639	0,2608	0,4505	0,1208	0,2768	0,3272	0,1986	1,028*	0,4033

^{* -} звездочкой отмечены наибольшие отклонения

Здесь наглядно видно преимущество МНОК по сравнению с МНК, связанное с наибольшим отклонением теоретического значения K от экспериментального δ_K^* =-1,7%. Однако средние значения отклонений оказываются практически одинаковыми.

Таким образом, даже при небольших изменениях выходного параметра, изменяющегося от 0,295 до 0,318, то есть в 1,06 раза, видно преимущество МНОК по сравнению с МНК, связанное при проверке адекватности с меньшими значениями расчетного критерия Фишера и большими значениями расчетного критерия Стьюдента по сравнению с их табличными значениями, хотя оба метода в рассматриваемом случае приводит к адекватным линеаризированным уравнениями (3.12) и значимым в них обоих коэффициентов *а* и *b*.

выводы к третьей главе

- 1) Предлагаемый коэффициентов метод И программа расчета линеаризированного уравнения по экспериментальной зависимости выходных значений функций от входных значений аргумента, отличающий тем, что минимизируется не сумма квадратов отклонения (МНК), а сумма квадратов относительных отклонений теоретических значений функции экспериментальных значений (МНОК). Это позволяет увеличить точность математического моделирования для применения в САПР. Так точность аппроксимации вязкости водоглицеринового раствора МНОК по сравнению с МНК повышается для наибольших относительных отклонений в 1,3 раза, а средних в 1,4 раза, а адекватность аппроксимирующего уравнения увеличивается на 8,6%, значимость коэффициентов возрастает в уравнении: $\mu = K \cdot n^c$: для K – более чем в 2,38 раза, а n – на 11,6%. Для колориметрических исследований зависимости светопроницаемости раствора КМпО₄ от его концентрации в воде оба метода дают практически одинаковую точность, так как сама концентрация раствора в экспериментах менялась всего на 7%.
- Разработанный программа метод и ДЛЯ расчета критериев регрессионного анализа линеаризированного уравнения по экспериментальной зависимости выходных значений функции от входных значений аргумента в отличающийся тем, отсутствии параллельных опытов, геометрическое подобие треугольника со сторонами равными разности значений i-1, i, i+1 по аргументу для расчета условных значений функции в параллельных опытах и обрабатывать заданные табличные зависимости выходных параметров как функций входных методами корреляционного анализа. Это позволяет сократить срок создания систем автоматизации проектирования и автоматизации технологической подготовки производства, связанный с корреляционным анализом на время, равное его затратам на проведение параллельных опытов. В наших экспериментальных исследованиях затраты времени на один параллельный

опыт при корреляционном анализе экспериментальной зависимости вязкости водногицеринового раствора от массовой концентрации глицерина составляли 2 часа 18 минут при общих затратах на весь корреляционный анализ 6 часов, то есть экономия времени составляет 35,8%.

Глава IV. ПЕРСПЕКТИВНЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ ДЛЯ КОНЦЕНТРИРОВАНИЯ РАСТВОРОВ НА ПОЛУПРОНИЦАЕМЫХ МЕМБРАНАХ В ЦЕНТРОБЕЖНОМ ПОЛЕ ЦЕНТРИФУГ

4.1 Оценка возможности применения фильтрующих центрифуг в мембранных процессах

Основной особенностью неньютоновских жидкостей является снижение эффективной вязкости с ростом скоростей деформации. Увеличение скоростей деформации можно обеспечить вибрацией, хотя она значительно влияет на износ узлов машин и оборудования. Поэтому перспективным является использование снижения вязкости при переработке структурированных и неньютоновских жидкостей в центробежном поле виброфильтрующих центрифуг.

Обычная фильтрующая центрифуга представляет собой ротор конической цилиндрической формы с перфорированной боковой поверхностью экипированной фильтровальным материалом. В известных конструкциях фильтрующих центрифуг предусматривается непрерывное срезание осадка с помощью ножа, скребка, диска, шнека или поршня с последующей его транспортировкой механическими средствами или сжатым воздухом. Однако при срезании осадка в поры фильтровального материала втираются частицы тонкодисперсной фазы, уплотненной центробежной силой, что приводит к резкому необходимости возрастанию гидравлического сопротивления, остановки центрифуги на регенерацию фильтровального материала и к снижению производительности машины [111].

На основании теоретических исследований, изложенных в данной работе, и опираясь на применении инженерного творчества и современных физических эффектов (центробежная сила, гидроклин, гидроудар, эффект резонанса, обеззараживание электрически током и ультрафиолетовыми лампами), предлагаются варианты перспективных конструкций мембранных центрифуг для

проведения процессов ультрафильтрации и обратного осмоса, защищенные патентами РФ.

4.2 Двухроторная маятниковая центрифуга

Для повышения эффективности работы центрифуг, а также для расширения их функциональных возможностей эти машины можно комплектовать дополнительным внешним перфорированным ротором, на внутренней стенке которого закрепляют полупроницаемую мембрану (рисунок 4.1).

Маятниковая двухроторная фильтрующая центрифуга периодического действия работает следующим образом.

Очищаемую жидкость подают в центральное отверстие крышки 6 внутрь перфорированного ротора 1, который приводят во вращение с угловой скоростью электродвигателем 11 через шкивы 12 и 13 и вал 4, на котором перфорированный ротор 1 закреплён. Под действием центробежной силы очищаемая жидкость прижимается к боковой стенке перфорированного ротора 1 под действием центробежного давления фильтруется через его отверстия с образованием осадка на внутренней стенке перфорированного ротора 1. Очищенный от частиц дисперсной фазы фильтрат центробежной силой прижимается к кольцевой перегородке 17 и выходит с неё через отверстие 18. Этот фильтрат центробежной силой прижимается к поверхности полупроницаемой мембраны 16 закрепленной 15. боковой поверхности дополнительного ротора Под действием на центробежного давления идёт процесс ультрафильтрации на полупроницаемой мембране 16 с образованием пермеата, то есть очищенного от молекул растворённых в очищаемой жидкости веществ. Этот пермеат выводится из кожуха 5 через патрубок 22, а концентрированный раствор фильтрата, то есть ретант, через отверстие 19 в крышке 2 ротора 1 попадает на поверхность перегородки 20 и по патрубку 21 выводится из центрифуги [110].

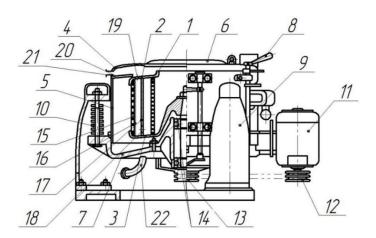


Рисунок 4.1 — Двухроторная маятниковая центрифуга [110] (совмещение в одном объекте центробежного давления, фильтрования и ультрафильтрации)

Установка под общей крышкой ротора осесимметрично с ротором дополнительного перфорированного ротора большего диаметра позволяет использовать его для создания дополнительного избыточного давления на его боковых стенках, большего чем центробежное давление, создаваемое в роторе, а увеличение центробежного давления как движущей силы процесса центробежной ультрафильтрации способствует повышению производительности.

Закрепление на внутренней боковой стенке дополнительного ротора полупроницаемой мембраны улавливать ней позволяет на при ультрафильтрации растворенные в очищаемой жидкости молекулы растворенных веществ, повышает производительность маятниковой фильтрующей центрифуги, так как отпадает необходимость улавливать эти молекулы в осадке уловленных дисперсных частиц на боковой поверхности перфорированного ротора при многократном рецикле очищаемой жидкости через этот ротор, либо улавливать эти молекулы дополнительно в ультрафильтрационном аппарате, создавая давление в нем специальным насосом.

Установка на крышке ротора цилиндрической перегородки с отверстиями в нижней ее части позволяет получаемый фильтрат после фильтрации исходной очищаемой жидкости, прошедшей через перфорированный ротор, направлять в нижнюю часть дополнительного ротора с полупроницаемой мембраной и

заставлять фильтрат двигаться сверху вниз вдоль полупроницаемой мембраны, через которую проходит пермеат за счет центробежного давления на боковых стенках дополнительного ротора, что способствует повышению производительности при центробежной ультрафильтрации.

Выполнение в крышке ротора между кольцевой перегородкой и дополнительным ротором отверстия позволяет отводить ретант (концентрированный раствор фильтрации) кольцевого зазора между боковыми стенками дополнительного ротора и кольцевой перегородки в верхнюю часть кожуха, без его накапливания в этом кольцевом зазоре, что также способствует росту производительности.

Закрепление кольцевой перегородки на боковой стенке кожуха над крышкой ротора и установка на этой стенке патрубка для отвода ретанта позволяет непрерывно отводить ретант (концентрированный раствор фильтрата) из центрифуги без ее остановки и очистки, что приводит к повышению производительности центрифуги.

Таким образом, осесимметричная установка с внешней стороны префорированного ротора 1 и дополнительного ротора 15 с закреплением на его внутренней боковой стенке полупроницаемой мембраны 16, а также установка между перфорированным ротором 1 и дополнительного ротора 15 также осесимметрично им кольцевой перегородки 17 с отверстиями 18 в нижней части для прохода фильтрата, выполнение в крышке ротора 1 между кольцевой перегородкой 17 и дополнительным ротором 15 отверстия 19 для отвода ретанта из кольцевого канала между вращающимися боковыми поверхностями дополнительного ротора 15 с полупроницаемой мембраной 16 и кольцевой перегородкой 17 и закрепление перегородки 20 и патрубка 21 на боковой стенке кожуха 5 над крышкой 2 перфорированного ротора 1 для отвода ретанта из кожуха 5 позволяет удалять из очищаемой жидкости не только частицы дисперсной фазы, но и молекулы растворённых в ней веществ, что расширяет функциональные возможности центрифуги без увеличения затрат времени на остановку и регенерацию рабочих фильтрующих поверхностей маятниковой фильтрующей

центрифуги периодического действия, что способствует увеличению её производительности.

4.3 Центробежный насос для ультрафильтрации

Широкое распространение насосного оборудования для перекачивания жидкостей позволило разработать конструкцию устройства [122], позволяющего перекачивать жидкость и одновременно проводить ее ультрафильтрацию с применением полупроницаемой мембраны, которая крепиться в корпус насоса на перфорированную перегородку. Для надежной фиксации полупроницаемой мембраны конструкция насоса предусматривает наличие проволочной спирали, обтянутой мягкой текстильной оболочкой.

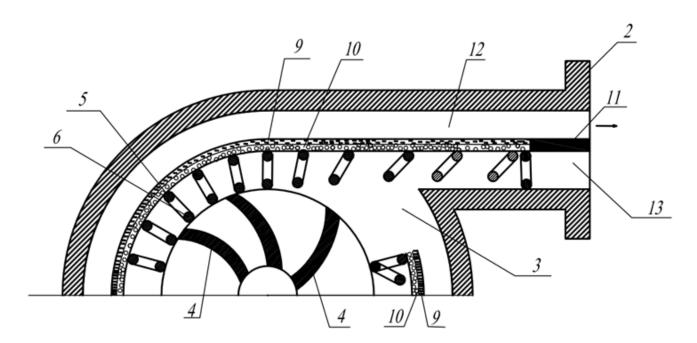


Рисунок 4.2 – Схема центробежного насоса для ультрафильтрации [122] (совмещение в одном объекте центробежного давления, перекачивания и ультрафильтрации жидкости)

Центробежный насос работает следующим образом.

При вращении рабочего колеса 4 поток жидкости поступает в рабочую камеру 3. При движении по кольцевой рабочей камере 3 в нагнетаемой жидкости

под действием центробежной силы создается избыточное центробежное давление над поверхностью полупроницаемой мембраны 10 под действием которого часть нагнетаемой жидкости фильтруется во внешний слой 12 с образованием пермеата, то есть фильтрата очищенного от молекул растворенных в нагнетаемой жидкости веществ (углеводородов, жиров растительных масел и др.), а часть в виде ретанта, то есть концентрированного раствора нагнетаемой жидкости с молекулами вышеназванных веществ остаются во внутреннем слое 13. Разделенные горизонтальным порогом 11 потоки пермеата и ретанта, не смешиваясь, выходят из нагнетательного патрубка 2 и собираются в отдельных емкостей (на фигурах не показанных). Текстильная оболочка 6 проволочной спирали 5 не только прижимает поверхность полупроницаемой мембраны 10 к внутренней поверхности кольцевой перфорированной перегородки 9, но и закручивает слой 13 внутреннего потока нагнетаемой жидкости, создавая вихревое движение жидкости, предотвращает концентрационную поляризации, то есть разрушает слой молекул, от которых очищается нагнетаемая жидкость в пермеате, на внутренней поверхности полупроницаемой мебраны 10, что способствует увеличению скорости ультрафильтрации и производительности по пермеату-внешнему потоку 12 нагнетаемой жидкости.

Герметичное прикрепление к внутренней стенке колец позволяет разделить весь поток нагнетаемой жидкости на внешний и внутренний слои внутри рабочей камеры, а установка внутри колец кольцевой перфорированной перегородки (в виде полутора) позволяет фильтроваться внутреннему потоку за счет центробежной силы из внутреннего потока во внешний что расширяет функциональные возможности центробежного насоса и позволяет увеличивать производительность при очистке перекачиваемой жидкости во внешнем потоке.

Закрепление на внутренней поверхности кольцевой перфорированной полупроницаемой мембраны позволяет проводить на ней ультрафильтрацию, так как центробежные силы создают центробежное давление, под действием которого нагнетаемая жидкость разделяется на полупроницаемой мембране на пермеат, то есть очищенную от молекул растворенных в нагнетаемой жидкости веществ во

внешнем потоке, что приводит к росту производительности по очищенной жидкости – пермеату.

Снабжение проволочной спирали мягкой текстильной оболочкой обеспечивает мягкое прижатие полупроницаемой мембраны к внутренней поверхности кольцевой перфорированной перегородки без разрывов поверхности мембраны, то есть увеличивает срок её эксплуатации без остановок, ремонта и замены, что способствует увеличению производительности. Установка на выходе нагнетательного патрубка горизонтального порога предотвращает перемешивание внешнего потока жидкости, то есть пермеата с внутренним потоком, то есть с ретантом, что уменьшает необходимость повторной дополнительной очистки пермеата, что также увеличивает производительность по очищенной жидкости – пермеату.

Таким образом, все вышеназванные технические усовершенствования позволяют получать в центробежном насосе на просто нагнетаемую жидкость с повышенным давлением в нагнетательном патрубке, но и одновременно очищать ее с разделением на пермеат и ретант. Это расширяет функциональные возможности центробежного насоса и приводит к высокой производительности по очищенной от молекул растворенных в нагнетаемой жидкости веществ.

4.4 Ультрафильтрующая центрифуга с крутильными колебаниями

Для увеличения скорости фильтрования на полупроницаемых мембранах и повышения производительности фильтрующих машин разработана конструкция вертикальной подвесной центрифуги [107], работающая следующим образом.

По трубке 10 внутри барабана 4 подают фильтруемую жидкость. Одновременно включают приводной двигатель 2, который вращает вал 1 с прикрепленным к нему барабаном 4 (рис. 4.3).

Под действием центробежной силы фильтруемая жидкость прижимается к цилиндрической стенке барабана 4 и фильтруется через отверстия сита 5. Фильтрат направляется стенками кожуха 3 в емкость 9. Фильтрат заполняет емкость 9 и через

отверстия перфорированной боковой поверхности 7 заполняет зазор между внутренней боковой перфорированной поверхностью 7 стакана 6 и боковой поверхностью неподвижного стержня 8. Так как внутренняя перфорированная поверхность 7 стакана 6 имеет форму эллипса, и такую же эту форму эллипса имеет боковая поверхность стержня 8, то при вращении стакана 6 вокруг стержня 8 зазор между боковыми поверхностями 7 и 8 меняется, соответственно то уменьшаясь до минимума, то возрастая до максимума:

$$\delta = \frac{D - d}{2},\tag{4.1}$$

где D — малый диаметр эллипса внутренней поверхности стакана, мм;

d – большой диаметр эллипса неподвижного стержня, мм.

Соответственно изменяется OT максимума ДΟ минимума момент сопротивления при вращении стакана 6 относительно стержня 8. За один оборот момента сопротивления вала также изменения происходят дважды, соответственно то затормаживая, то ускоряя вращение стакана 6 вместе с валом 1 и барабаном 4. Эти крутильные колебания приводят к тиксотропному разжижению слоя концентрационной поляризации, накапливаемого на внутренней стенке сита 5, уменьшению его эффективной вязкости и стеканию осадка на днище барабана 4.

Непрерывное разжижение слоя концентрационной поляризации и его стекание на днище барабана 4 уменьшает гидравлическое сопротивление осадка, увеличивает скорость центробежной фильтрации через мембрану и сито 5 и приводит к росту производительности.

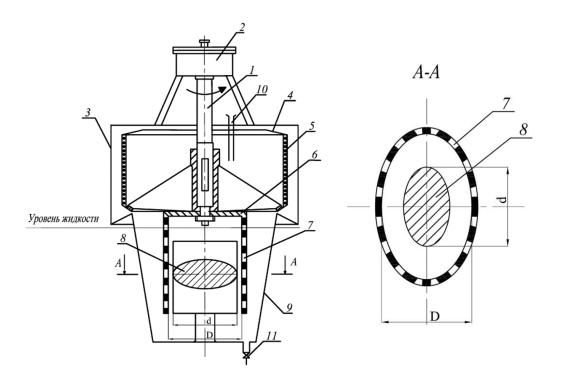


Рисунок 4.3 — Схема ультрафильтрующей центрифуги с крутильными колебаниями ротора [107]

(Совмещение в одном объекте центробежного давления и гидроклина) (A-A – разрез стакана и неподвижного стержня)

Таким образом, выполнение боковой поверхности 7 в стакане 6 перфорированной и придание этой поверхности формы эллипса, а также осесимметричная установка внутри стакана 6 неподвижного стержня 8, имеющего также форму эллипса, при отношении малого диаметра D эллипса внутренней поверхности стакана 6 к большому диаметру d эллипса неподвижного стержня 8, подчиняющегося выражению:

$$\frac{D}{d} = 1,05...1,15,\tag{4.2}$$

позволяет вести процесс центробежного фильтрования с непрерывным тиксотропным разжижением слоя концентрационной поляризации под действием крутильных колебаний, возникающих при вращении стакана 6 относительно неподвижного стержня 8, что приводит к увеличению скорости фильтрования, а значит и к росту производительности.

4.5 Вертикальная ультрафитрующая центрифуга с крутильными колебаниями ротора

Следующая конструкция вертикальной центрифуги также направлена на повышение производительности этого типа машин [106]. Принцип действия ее многом схож с предыдущей конструкцией (рис. 4.4).

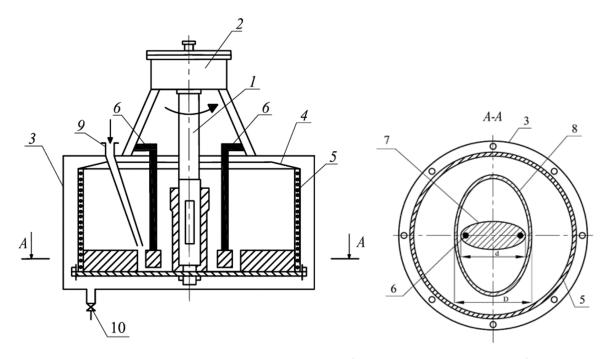


Рисунок 4.4 — Схема вертикальной ультрафильтрующей центрифуги [106] (Совмещение в одном объекте центробежного давления и гидроклина)

По трубке 9 внутри цилиндрического барабана 4 подают фильтруемую жидкость в кольцевой зазор между диском 7 и кольцом 8. Одновременно включают приводной двигатель 2, который вращает вал 1 с прикрепленным к нему цилиндрическим барабаном 4.

Под действием центробежной силы фильтруемая жидкость прижимается к цилиндрической стенке цилиндрического барабана 4 и фильтруется через отверстия сита 5. Так как поверхность диска 7 имеет форму эллипса, и такую же эту форму эллипса имеет поверхность кольца 8, то при вращении кольца 8 вокруг диска 7 боковой зазор между поверхностями диска 7 и кольца 8 меняется,

соответственно то уменьшаясь до минимума, то возрастая до максимума — формула 4.1.

Соответственно изменяется otмаксимума ДО минимума момент сопротивления при вращении кольца 8 относительно диска 7. За один оборот вала 1 также изменения момента сопротивления происходят дважды, соответственно то затормаживая, то ускоряя вращение кольца 7 вместе с валом 1 и барабаном 4. Эти крутильные колебания приводят К тиксотропному разжижению концентрационной поляризации, накапливаемой на внутренней стенке сита 5, эффективной вязкости И стеканию *у*меньшению слоя лнише цилиндрического барабана 4.

Непрерывное разжижение слоя концентрационной поляризации и его стекание на днище цилиндрического барабана 4 уменьшает гидравлическое сопротивление этого слоя, увеличивает скорость центробежной ультрафильтрации через сито 5 и приводит к росту производительности.

Таким образом, выполнение поверхности диска 7 в форме эллипса, а на днище цилиндрического барабана 4 в его плоскости прикреплено кольцо 8, имеющее также форму эллипса, при отношении длины большой оси d эллипса диска 7 к длине малой оси D эллипса кольца 8, подчиняющегося выражению:

$$\frac{D}{d} = 0,82...0,92,\tag{4.3}$$

позволяет вести процесс центробежного фильтрования с непрерывным тиксотропным разжижением слоя концентрационной поляризации под действием крутильных колебаний, возникающих при вращении кольца 8 относительно неподвижного диска 7, что приводит к увеличению скорости фильтрования, а значит и к росту производительности.

4.6 Резонансная ультрафильтрующая центрифуга

На рис. 4.5 показана конструкция резонансной ультрафильтрующей центрифуги с непрерывной регенерацией пор мембраны, закрепленной на боковой поверхности ротора [109].

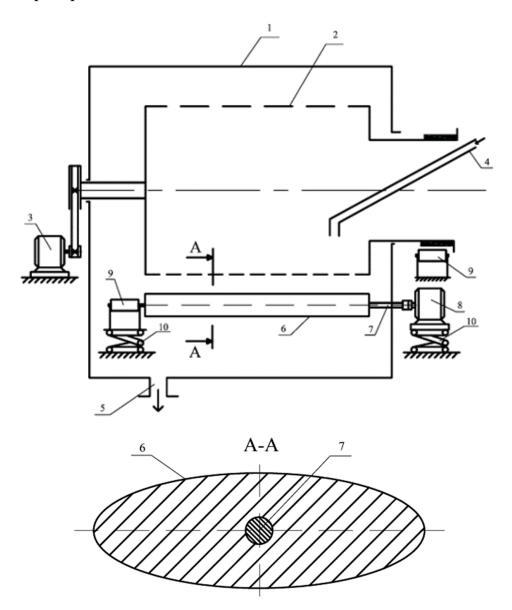


Рисунок 4.5 — Схема резонансной ультрафильтрующей центрифуги с регенерацией микропор в гидроклине [109]

(Использование физических эффектов: гидроклин, гидроудар с резонансом) (A-A - поперечное сечение овального валика средства для регенерации)

Фильтрующая центрифуга работает следующим образом. По патрубку 4 подается очищаемый раствор, который под действием центробежного поля равномерно распределяется внутри ротора 2 по его боковой перфорированной поверхности.

Под действием центробежного давления жидкая фаза - пермеат фильтруется через мембрану и перфорированную поверхность ротора 2, а улавливаемые молекулы накапливаются на поверхности мембраны. Однако в зазоре между боковой поверхностью ротора 2 и валиком 6 за счет эффекта гидроклина создается противодавление, которое разрушает структуру слоя улавливаемых молекул, приводящих к концентрационной поляризации.

Помимо эффекта гидроклина за счет овальной формы валика 6 зазор между боковой поверхностью ротора 2 и валиком 6 при вращении изменяется, что приводит дополнительному эффекту гидроудара пульсациях при противодавления в этом зазоре, интенсифицирующему процесс регенерации пор ультрафильтрационной мембраны. Таким образом, в течение одного оборота ротора 2 вся его поверхность ультрафильтрационной мембраны успевает пройти стадию регенерации. Для овального валика 6, установленного осесимметрично с валом 7, произойдет за один оборот валика 6 две пульсации противодавления. Слив фильтрата происходит по патрубку 5, а так как упругость пружин 10 соответствует выражению (4.3), то средство для регенерации, состоящее из валика 6, его вала 7 с отдельным приводом 8 и опорами 9 вращается в резонансном режиме с большой обеспечивающей амплитудой, полную И быструю регенерацию перфоррированного ротора 2, что способствует увеличению производительности.

Таким образом, закрепление второго конца вала 7 валика 6 в подшипнике, установленном на опоре 9, и закрепление отдельного привода 8 валика 6 и обоих его опор 9 на цилиндрических пружинах 10 с упругостью для обеспечения резонансного режима, описываемое выражением: $a = \frac{\left(4 \cdot \pi \cdot \omega\right)^2 \cdot m}{n}$, позволяет за счет уменьшения на порядок общей массы системы, закрепленной на цилиндрических пружинах, уменьшить упругость пружин, повышать амплитуду

колебания и скорость регенерации пор ультрафильтрационной мембраны, что в целом увеличивает производительность.

4.7 Ультрафильтрующая центрифуга с обеззараживанием раствора электрическим током

На рис. 4.6 представлена конструкция ультрафильтрующей центрифуги, позволяющей одновременно с удалением очищаемой электропроводной жидкостью на молекулярном уровне, проводить обеззараживание этой жидкости. Ее отличие от стандартных конструкций заключается в том, что вторым электродом является стенка ротора, причем к кольцу жестко прикреплена коническая гильза с углом конусности равным углу конусности ротора, при этом корпус и ротор заземлены [103].

При работе центрифуги вместе с вращением вала 2 с угловой скоростью о вращается перфорированный конический ротор 3. На кольцо 5 подают положительный потенциал от источника постоянного тока. По трубе 4 подают очищаемую жидкость, которая под действием центробежной силы образует слой этой жидкости на стенке конического ротора 3, заполняя полностью кольцевой зазор между коническими стенками гильзы 7 и конического ротора 3. Под действием электрического тока, идущего по электропроводной очищаемой жидкости от гильзы 7 к коническому ротору 3, происходит ее обеззараживание и одновременно под действием центробежной силы большие молекулы оседают на поверхности ультрафильтрационной мембраны. Очищенный от микроорганизмов ретант перемешивается через верхнюю часть конического ротора 3 между его боковой стенкой и кольцевым отражателем 8 в корпус 1 и из него сливается по патрубку 9, а пермеат сливается по патрубку 10.

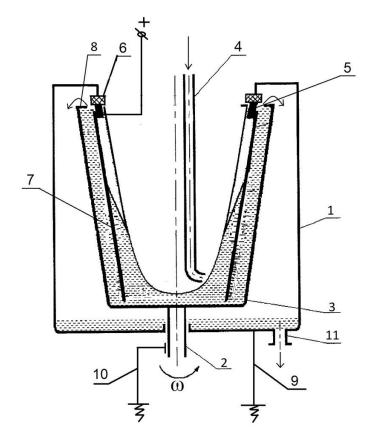


Рисунок 4.6 – Схема ультрафильтрующей центрифуги с обеззараживанием электрическим током [103]

Жесткое закрепление к кольцу конической гильзы с углом конусности, равным углу конусности ротора, обеспечивает одинаковое время пребывания очищаемой от микроорганизмов жидкости в электрическом поле и одинаковую напряженность электрического поля в зазоре между коническими стенками гильзы и ротора, что приводит к повышению степени обеззараживания и производительности по фугату.

Заземление корпуса и ротора снижает вероятность короткого замыкания, приводящего к остановке работы центрифуги, что увеличивает основное время эксплуатации и в целом производительность.

Таким образом, жесткое прикрепление к кольцу 5 конической гильзы 7 с углом конусности, равным углу конусности ротора 3, и заземление корпуса 1 и конического ротора 3, позволяет одновременно с удалением очищаемой электропроводной жидкостью «больших» молекул, проводить обеззараживание

этой жидкости, что способствует повышению производительности по пермеату и ретанту.

4.8 Ультрафильтрующая центрифуга с обеззараживанием ультрафиолетовым светом

Для разделения суспензий и эмульсий, очистки жидкостей с одновременным их обеззараживанием была разработана конструкция центрифуги [123].

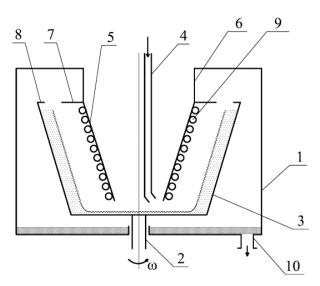


Рисунок 4.7 – Схема ультрафильтрующей центрифуги с обеззараживанием ультрафиолетовыми лампами [123]

При работе центрифуги вместе с вращением вала 2 с угловой скоростью ω вращается перфорированный ротор 3 с ультрафильтрационной мембраной на его поверхности. По трубе 4 подают исходный раствор, который под действием центробежной силы поднимается по вращающейся стенке ротора 3, образуя слой жидкости в зазоре между стенкой ротора 3 и стенкой кольца 5. Жидкость, находящаяся в зазоре между вращающейся стенкой ротора 3 и стенкой кольца 5, под действием ультрафиолетовых ламп 9 обеззараживается. Очищенный пермеат удаляется из корпуса 1 центрифуги по патрубку 10, а обеззараженный ретант – по патрубку 11.

Закрепление равномерно по высоте ультрафиолетовых ламп на внешней стенке кольца позволяет более равномерно обеззараживать растовр всеми ультрафиолетовыми лапами, что приводит к повышению степени обеззараживания и производительности по пермеату и ретанту.

Выполнение кольцевого зазора между боковой стенкой ротора и кольца с постоянным значением по высоте позволяет создавать одинаковое по интенсивности излучение от ультрафиолетовых ламп по высоте по внутренней боковой поверхности ротора, что приводит к равенству обеззараживания жидкости с одинаковой нагрузкой на стенки ротора, предотвращает его динамическую разбалансировку, уменьшает время на остановки, ремонт и обслуживание узлов центрифуги, а значит, увеличивает ее производительность.

Перфорированная боковая поверхность боковых стенок ротора и кольца обеспечивает одинаковое время пребывания жидкости внутри ротора, больше чем время обеззараживания. Поэтому выходящий, очищенный от микробов ретант через верхнюю часть ротора будет полностью обеззаражен. Это так же способствует работе центрифуги с большой производительностью.

Таким образом, закрепление ультрафиолетовых ламп 9 на внешней стенке кольца 5 позволяет одновременно с отделением «больших» молекул эффективно обеззараживать раствор, что приводит к повышению качества очищенного ретанта и производительности по пермеату - ретанту. Выполнение кольцевого зазора между боковой стенкой ротора 3 и кольца 5 с постоянным значением по высоте позволяет создавать одинаковый световой поток от ультрафиолетовых ламп 9 в любом по высоте ротора сечении, что приводит к равенству обеззараживания раствора и одинаковой нагрузке на стенке ротора 3, предотвращает его динамическую разбалансировку, уменьшает время на остановки, ремонт и обслуживание узлов центрифуги, а значит, увеличивает ее производительность.

выводы к четвертой главе

На основе применения методов инженерного творчества и совмещения в одной конструкции использования нескольких известных физических эффектов: центробежного давления, гидроклина, тиксотропного разрушения, гидроудара, вибрации, резонанса, обеззараживания электрическим током и ультрафиолетовым светом разработаны конструкций мембранных центрифуг, на роторе которых возможно закреплена полупроницаемая мембрана, позволяющие совмещать процессы фильтрации, обратного осмоса и ультрафильтрации, обеззараживания и регенерации микропор, что нивелирует концентрационную поляризацию и способствует интенсификации процессов очистки многокомпонентных систем на молекулярном и ионном уровнях.

ЗАКЛЮЧЕНИЕ

- 1. На основании системного подхода теории математического моделирования и концептуального проектирования решена актуальная научная задача по разработке математического и методического обеспечения САПР мембранных аппаратов с построением и исследованием моделей, алгоритмов и методов синтеза их проектных решений, обеспечивающих повышение точности расчетов поверхности мембраны на 17% и степени очистки пермеата на 45% за счет описания структуры потока диффузионной моделью вместо стандартных идеальных моделей вытеснения и смешения.
- 2. Разработана методика компьютерной поддержки процесса автоматизированного проектирования мембранных аппаратов для процессов ультрафильтрации и обратного осмоса в центробежном поле и с учетом продольной диффузии, что позволило модернизировать типовые и создать программы расчетов для мембранных процессов центрифугирования с движущей силой, образующейся в центробежном поле.
- Разработаны алгоритмы и программное обеспечение для расчетов коэффициентов линеаризированного уравнения экспериментальной ПО зависимости выходных значений функций от входных значений аргумента с заменой минимизации суммы квадратов отклонения в МНК на сумму квадратов отклонений критериев регрессионного относительных И анализа линеаризированного уравнения по экспериментальной зависимости выходных значений функции от входных значений аргумента в отсутствии параллельных опытов, увеличивающих точность по сравнения с МНК в 1,3÷1,4 раза и снижающих время проведения и обработки экспериментальных данных на 35%.
- 4. Использование методов инженерного творчества и известных физических эффектов и разработанной диффузионной модели позволили создать и запатентовать 6 новых технических решений, позволяющих нивелировать концентрационную поляризацию, применять для создания движущей силы давление центробежного поля и совместить процессы мембранного разделения с

процессами фильтрования и обеззараживания. Это позволяет увеличить производительность более чем в 2 раза и уменьшить концентрацию молекул и ионов в пермеате на 40 и более процентов.

Дальнейшие научные исследования в данном направлении связаны с разработкой методики определения критерия Пекле до начала стадия проектирования промышленных ультрафильтрационных и обратноосмотических установок; исследованием влияния температуры раствора, давления над мембраной, толщины слоя и скорости вращения ротора фильтрующих центрифуг на производительность и качество фильтрата.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Дытнерский Ю.И. Основные процессы и аппараты химической технологии: Пособие по проектированию/ Ю. И. Дытнерский, Г. С. Борисов, В. П. Брыков и др. Под ред. Ю. И. Дытнерского, 2-е изд., перераб. и дополн. М.:Химия, 1991. 496 с.
- 2. Тимонин А.С. Машины и аппараты химических производств: учебник для вузов / Тимонин А.С., Балдин Б.Г., Борщев В.Я., Ю.И. Гусев и др. Под общей редакцией А.С. Тимонина. Калуга: Издательство «Ноосфера», 2014. 856 с.
- 3. Касаткин А.Г. Основные процессы и аппараты химической технологии: учебник для вузов 10-е изд., стереотипное, доработанное. Перепечатано с изд.1973 г. М.: ООО ТИД «Альянс», 2004. 753 с.
- 4. Баландина А.Г. Развитие мембранных технологий и возможность из применения для очистки сточных вод предприятий химии и нефтехимии / А.Г. Баландина, Хангильдин Р.И., Ибрагимов И.Г., Мартяшева В.А. // Нефтегазовое дело. Электронный научный журнал. 2015. №5. с.336-375.
- 5. Свитцов А.А. Мембранные технологии в России // Химический журнал. 2010. №10. с.22-26.
- 6. Десятов А.В. Опыт исследования мембранных технологий для очистки и опреснения воды / А.В. Десятов, Баранов А.Е., Баранов Е.А., Какуркин Н.П., Асеев А.В. М.: Химия, 2008. 240 с.
- 7. М.Л. Смолянский. Таблицы неопределенных интегралов, 2-е изд., испр. М.: Гос. изд. физ-мат. лит., 1963. 112 с.
- 8. Тимонин А.С. Инженерно-экологический справочник. Т.2. // Калуга: Издательство Н. Бочкаревой, 2003.-1024 с.
- 9. Левеншпиль О. Инженерное оформление химических процессов // М. : Химия, 1969.-624 с.
- 10. Кафаров В. В. Методы кибернетики в химии и химической технологии // М. : Химия, 1986.-463 с.

- 11. Закгейм А.Ю. Введение в моделирование химико-технологических процессов // М.: Химия, 1973. 224 с.
- 12. Родионов А.И., Клушин В.Н., Торочешников Н.С. Техника защиты окружающей среды: учебник для вузов // М.: Химия, 1989. 512 с.
- 13. Проскуряков В. А., Шмидт Л.И. Очистка сточных вод в химической промышленности // Л. : Химия, 1977.-464 с.
- 14. Тверской В.А. Мембранные процессы разделения. Полимерные мембраны // М.: МИТХТ им. М.В. Ломоносова, 2008. 59 с.
- 15. Куянов Г.И., Новиков В.И., Сенявин А.Б. Применение мембранных металлокерамических фильтров в процессе переработки ЖРО // Новые промышленные технологии. 2011. №4. с.19-22.
- 16. Процессы и аппараты нефтегазопереработки и нефтетехимии: учебник для вузов / А.И. Скобло и др. 3-изд., перераб. и доп. М.: ООО «Недрабщиесцентр», 2000. 677с.
- 17. Басарыгин М.Ю. Результаты математического моделирования процесса очистки эмульгированного газового конденсата от осадков методом осадительного центрифугирования, Гипотезы, поиск, прогнозы / Сб. научн. трудов СКО РИА, вып. № 14, Краснодар, 2002 г. с.24-27.
- 18. Овчинников Д. Фильтрующие центрифуги / Д. Овчинников, А. Фоминых, А. Шарипов. Издательство «LAP Lambert Academic Publishing», 2013. 132с.
- 19. П. м. 131310 РФ, МПК В01F5/06. Устройство для приготовления жидких смесей / Ж.Н. Малышева, Е.В. Шишкин, А.Б. Голованчиков, Ю.В. Попов, А.М. Дудкин, Е.В. Васильева; ВолгГТУ. - 2013.
- 20. Технология получения микропористых керамических мембран на основе природных алюмосиликатов / А.Л. Шкуратов, Н.П. Шапкин, И.Г. Хальченко, А.В. Труханенко, В.И. Разов, В.Ю. Майоров // Химическа технология . -2016 . Т. 17, N24 . С. 165-170.
- 21. Поляков, Ю. С. Оценка влияния эксплуатационных параметров и мембранных ха-рактеристик на динамику проницаемости и селективности ультра-

- и микро-фильтрационных мембран с помощью фильтрационной модели / Ю.С. Поляков // Теоретические основы химической технологии. 2009. Т.4, №6. с. 685-694.
- 22. Программа для технологического расчета систем нанофильтрации / А.Г. Первов [и др.] // Водоснабжение и санитарная техника. 2008. № 11. с. 12-19.
- 23. Моделирование переноса вещества в многослойных мембранах / С.Ш. Джунусбекова [и др.] // Известия вузов. Химия и химическая технология. 2007. Т.50, вып. 8. с.66-70.
- 24. Захаров, С. Л. Современные проблемы очистки водных растворов обратным осмосом / С. Л. Захаров, А. Х. Володин // Экологические системы и приборы. 2014. № 12. с. 19-22.
- 25. Голованчиков А.Б. Применение ЭВМ в химической технологии и экологии. Часть 2. Моделирование гидромеханических процессов. Учебное пособие ВолгГТУ.: Волгоград, 1995. 121 с.
- 26. Жуков В.П., Беляков А.Н. Моделирование совмещенных гетерогенных процессов на основе дискретных модулей уравнения Больцмана //Теор. основы хим. технологии, 2017. Т.51. №1. с. 78-84 [Zhukov V. P., Belyakov, A. N. Modelling of combined heterogeneous processes based on discrete modules of the Boltzmann equation //Theoretical Foundation of Chemical Engineering, 2017. Т. 51. No. 1. S. 78-84]
- 27. Голованчиков А.Б. Моделирование гидродинамических и тепломассообменных процессов в аппаратах и реакторах. Монография. ВолгГТУ.: Волгоград, 2013. 139 с.
- 28. Голованчиков А.Б. Ионообмен в аппарате непрерывного действия с диффузионной структурой потока по жидкости / А.Б. Голованчиков, А.А. Коберник, О.А. Залипаева, Н.А. Меренцов // Известия Волгоградского государственного технического университета. 2015. Т.8 №1(154). с. 39-43.
- 29. Голованчиков А.Б. Градиентные граничные условия для диффузионной модели структуры потоков / А.Б. Голованчиков, Ю.В. Аристова,

- Н.А. Дулькина, В.Н Карев // Известия Волгоградского государственного технического университета. 2015, Т.8 №1 (154). с.94-99.
- 30. Голованчиков, А.Б. Алгоритм расчёта насадочной ректификационной колонны с учётом продольного перемешивания по жидкой фазе / А.Б. Голованчиков, Н.А. Прохоренко, В.Н. Карев // Известия ВолгГТУ. Сер. Актуальные проблемы управления, вычислительной техники и информатики в технических системах. Волгоград, 2016. № 3 (182). с. 14-17.
- 31. Голованчиков, А.Б. Моделирование насадочной экстракционной колонны с диффузионной структурой потока по сплошной фазе / А.Б. Голованчиков, Н.А. Меренцов // Химическая технология. 2016. Т. 17, № 8. с. 377-384.
- 32. Голованчиков, А.Б. Моделирование процесса ректификации в исчерпывающей части насадочной колонны с диффузионной структурой потока по жидкой фазе / А.Б. Голованчиков, Н.А. Прохоренко, Н.А. Дулькина // Энерго- и ресурсосбережение: промышленность и транспорт. 2016. № 2 (14). с. 19-24.
- 33. Ho Chia-Chi, Zydney L. A combined pore blockage and cake filtration model for protein fouling during microfiltration. // J. Colloid & Interface Science. 2000. V. 232, p. 389-399.
- 34. Kosvintsev S., Holdich R.G., Cumming I.W., Starov V.M. Modelling of dead-end microfiltration with pore blocking and cake formation. // J. Membrane Science. 2002. V. 208, p. 181-192.
- 35. Knops F.N.M., Franklin B. Ultrafiltration for 90 MLD Cryptosporidium and Giardia free drinking water: a case study for the Yorkshire Water Keldgate Plant. // Proc. of the Conf. on Membranes in Drinking and Industrial Water Production (Paris, 3-6 October). 2000. V. 1, p. 71-78.
- 36. Mavrov V., Chmiel H., Kluth J., Meier J., Heinrich F., Ames P., Backes K., Usner P. Comparative study of different MF and UF membranes for drinking water production. // Desalination. 1998. V. 117, p. 189-196.
- 37. Laine J.-M., Vial D., Moulart P. / Status after 10 years of operation overview of UK technology today // Proceedings of the Conference on Membranes in

Drinking and Industrial Water Production. Paris, France, 3-6 October, 2000 – V. 1, p. 17-27.

- 38. Sch_fer A.I., Fane A.G., Waite T.D. Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter. // Water Resources. 2001. V. 35, No. 6, p. 1509-1517.
- 39. Chemical Engineering Dynamics An Introduction to Modelling and Computer Simulation Second, Completely Revised Edition / John Ingham, Irving J. Dunn, Elmar Heinzle, JiZ E. Pfenosil. GmbH: WILEY-VCH Verlag, D-69469 Weinheim (Federal Republic of Germany), 2000. 208 p.
- 40. Abulencia, J. Patrick. Fluid flow for the practicing chemical engineer / J. Patrick Abulencia, Louis Theodore.- Hoboken, New Jersey: Copyright by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc.,. Published simultaneously in Canada, 2009. 208 p.
- 41. Boyadjiev , Christo. Theoretical Chemical Engineering Modeling and Simulation / Christo Boyadjiev. Berlin Heidelberg : Springer-Verlag. 2010. S. 105.
- 42. Corsano, Gabriela. Aguirremathematical modeling approaches for optimization of chemical processes / Gabriela corsano, Jorge M. Montagna, Oscar A. Iribarren. New York: Nova Science Publishers, Inc. Copyright by Nova Science Publishers. 2009. 28-33 p.
- 43. Половинкин, А. И. Теория проектирования новой техники: закономерности техники и их применение / А.И. Половинкин. М. : Информэлектро, 1991. 109 с.
- 44. Половинкин, А. И. Основы инженерного творчества / А. И. Половинкин. М.: Машиностроение, 1988. 368 с.
- 45. Soleymani, A. Dimensionless number for identification of flow patterns inside a T-micromixer / A. Soleymani, H. Yousefi, I. Turunen.// Chemical Engineering Science. 2008. Vol. 63, Is. 21. P. 5291-5297.
- 46. Методы технического творчества, Г.Я. Буш, Издательство "Лиесма", г. Рига, 1972. 94 с.

- 47. Жоров, Ю. М. Моделирование физико-химических процессов нефтепереработки и нефтехимии / Ю. М. Жоров. Москва : Химия. 1978. 376 с.
- 48. Гильденблат, И. А. Структура потоков / И. А. Гильденблат, А. Ю. Закгейм.. М., 1985. 365 с.
- 49. Бельков, В. П. Математические модели химико-технологических процессов. Ч. 2. / В. П. Бельков, В. В. Шестопалов, В. В. Кафаров ; Моск. хим.-технолог. ин-т им. Д. И. Менделеева. Москва, 1981. 40 с.
- 50. Общий курс процессов и аппаратов химической технологии : учебник для вузов. В 2 кн. Кн. 1. / В .Г. Айнштейн, М. К. Захаров, Г. А. Носов, В. В. Захаренко, Т. В. Зиновкина, А. Л. Таран, А. Е. Костанян ; под ред. В. Г. Айнштейна. Москва : Химия. 1999. 888 с.
- 51. Альтшуллер, Г. С. Алгоритм изобретения / Г. С. Альтшуллер. М. : Моск. рабочий, 1973. 296 с.
- 52. Общая химическая технология. В 2 ч. Ч. 2 / К. В. Брянкин, Н. П. Утробин, В. С. Орехов, Т. П. Дьячкова. Тамбов : Изд-во ТГТУ. 2006. 528 с.
- 53. Кондауров, Б. П. Общая химическая технология / Б. П. Кондауров, В. И. Александров, А. В. Артемов. М. : Академия, 2005. 336 с.
- 54. Кутепов, А. М. Общая химическая технология / А. М. Кутепов, Т. И. Бондарева, М. Г. Беренгартен. -М. : Академкнига, 2004. 528 с.
- 55. Диффузионная модель перемешивания в технологических аппаратах при малых числах Пекле / А.С. Белоусов, Б. С. Сажин Б.С. // Известия высших учебных заведений. Технология текстильной промышленности. 2005. № 2. с. 96-100.
- 56. Серафимов, Л. А Некоторые вопросы массопереноса в бинарных смесях в терминах диффузионной модели / Л. А. Серафимов, А. В. Анисимов, К. Ю. Тархов // Вестник МИТХТ им. М.В. Ломоносова. 2009. Т. 4.; № 4. с. 40-48.
- 57. Воробьев. А. Х. Диффузионные задачи в химической кинетике / А. Х. Воробьев. М.: Изд-во Моск. ун-та, 2003. 92 с.
- 58. Моделирование структуры потоков во флотационных и электрофлотационных аппаратах / А. Б. Голованчиков, Н. А. Дулькина, Е. Ю.

- Храмцова, Н. В. Иванова // Химическая промышленность. 2005. Т. 82, № 3. с. 139-144.
- 59. Тябин, Н. В. Методы кибернетики в реологии и химической технологии: учебное пособие / Н .В. Тябин, А. Б. Голованчиков. Волгоград: «Волгоградская правда», 1983. 103 с.
- 60. Дильман, В. В Особенности многокомпонентной диффузии / В. В. Дильман, О. А. Каширская, В. А. Лотхов // Теоретические основы химической технологии. 2010. Т. 4, № 4. с. 396-400.
- 61. Modelling of packed bed membrane reactors for autothermal production of ultrapure hydrogen / T. P. Tiemersma [et al.] // Chem. Eng. Sci. 2006. Vol. 61. P. 1602.
- 62. Голованчиков, А. Б. Математические модели аппаратов при перемешивании / А. Б. Голованчиков, Н. В. Тябин // Теоретические основы химической технологии. 1983. Т. 17, № 4. с. 502-509.
- 63. Оценка эффективности перемешивания жидких компонентов в малогабаритных трубчатых турбулентных аппаратах / Ю. М. Данилов, А. Г. Мухаметзянова, Р. Я. Дебердеев, А. А. Берлин // Теоретические основы химической технологии. 2011. Т. 45, № 1. с. 81-84.
- 64. Using tracer methods and experimental design approach for examination of hydrodynamic conditions in membrane separation modules / Agnieszka Miskiewicz, Grazyna Zakrzewska-Trznadel, Andrzej Dobrowolski, Agnieszka Jaworska-Sobczak // Applied Radiation and Isotopes. 2012. Vol. 70, Is. 5. p. 837-847.
- 65. Беккер, В.Ф. Управление структурой потоков в аппаратах химической технологии / В. Ф. Беккер. Пермь : ПермГТУ, 2010. 208 с.
- 66. Батунер, Л. М. Математические методы в химической технике / Л. М. Батунер, М. Е. Позин. Л. : Химия, 1971.-824 с.
- 67. Вайнберг, А. М. Математическое моделирование процессов переноса. Решение нелинейных краевых задач : монография / А. М. Вайнберг. Москва-Иерусалим, 2009. 210 с.

- 68. Журбенко, И. Г. Стохастическое моделирование процессов / И. Г. Журбенко, И. А. Кожевникова. М.: Изд-во МГУ. 1990. 148 с.
- 69. Кафаров, В. В. Программирование и вычислительные методы в химии и химической технологии / В. В. Кафаров. М.: Наука, 1980. 431 с.
- 70. На, Ц. Вычислительные методы решения прикладных граничых задач / Ц. На М.: Мир, 1982. 296 с.
- 71. Закгейм, А. Ю. Математическое моделирование основных процессов химических производств / А. Ю. Закгейм, М. Б. Глебов. М. : Высш. шк., 1991. 400 с.
- 72. Худович, И. М. Современные системы автоматизированного моделирования химико-технологических процессов в нефтепереработке и нефтехимии / И. М. Худович; Полоцкий гос. ун-т. Новополоцк, 2008. 110 с.
- 73. Голованчиков, А. Б. Математическое моделирование изобретений в химической технологии: уч. пособие / А. Б. Голованчиков, Н. В. Тябин. Волгоград : Волгоградская правда, 1987. 110 с.
- 74. Концептуальное проектирование. Развитие и совершенствование методов : монография, [коллективная] / В. А. Камаев, Л. Н. Бутенко, А. М. Дворянкин, С. А. Фоменков, Д. В. Бутенко, Д. А. Давыдов, А. В. ЗаболееваЗотова, И. Г. Жукова, А. В. Кизим, С. Г. Колесников, В. В. Костерин, А. В. Петрухин, М. В. Набока. М. : Машиностроение-1, 2005. 360 с.
- 75. Бутенко, Л. Н. Разработка банка технических функций физических эффектов для химической технологии / Л. Н. Бутенко, Д. В. Бутенко, О. О. Привалов // Известия ВолгГТУ. Сер. Химия и технология элементоорганических мономеров и полимерных материалов : межвуз. Сборник науч. статей / ВолгГТУ. Волгоград, 2004. Вып.1, № 2. с. 125-128.
- 76. Техническое творчество: теория, методология, практика: энциклопед. словарь-справочник ": монография / Л. Н. Бутенко [и др.]; под ред. А. И. Половинкина. М.: НПО "Информ-система", 1995. 410 с.
- 77. Баженов, В. И. Основы планирования и моделирования в теории инженерного эксперимента / В. И. Баженов. М., 1983. 59 с.

- 78. Цыканова, М. А. Объектно-ориентированный фонд эвристических приемов для проектирования аппаратов химико-технологических систем / М. А.161 Цыканова, Л. Н. Бутенко // Известия ВолгГТУ. Сер. Актуальные проблемы управления, вычислительной техники и информатики в технических системах : межвуз. сб. науч. ст. / ВолгГТУ. Волгоград, 2007. Вып.2, № 2. с. 58-60.
- 79. Ильясов, И. И. Система эвристических приемов решения задач / И. И. Ильясов. Москва : РОУ, 1992. -138 с.
- 80. Малыгин, Е. Н. Информационный анализ и автоматизированное проектирование трехмерных компоновок оборудования химико-технологических схем / Е. Н. Малыгин. Тамбов : Изд-во Тамб. гос. техн. унта, 2006. 128 с.
- 81. Фрэнке, Р. Математическое моделирование в химической технологии / Р. Фрэнке. М.: Химия, 1971. 273 с.
- 82. Рудин М. Г. Проектирование нефтеперерабатывающих и нефтехимических заводов / М. Г. Рудин, Г. Ф. Смирнов. -Л. : Химия, 1984. 256 с.
- 83. Шувалов, В. В. Автоматизация производственных процессов в химической промышленности / В. В. Шувалов, Г. А. Огаджанов, В. А. Голубятников. 3-е изд. М.: Химия, 1991 480 с.
- 84. Борисов, А. В. Влияние конвекции на двумерную динамику в нелокальной реакционно-диффузионной модели / А. В. Борисов, А. Ю Трифонов, А. В. Шаповалов // Компьютерные исследования и моделирование. 2011.-Т. 3.№ 1.-с. 55-61.
- 85. Камаев В. А. Технологии программирования / В. А. Камаев. 2-е изд., перераб. и доп. М.: Высшая школа, 2006. 454 с.
- 86. Буш, Г. Я. Методы технического творчества / Г. Я. Буш. Рига : Лиесма, 1972. 73 с.
- 87. Флореа, О. Расчеты по процессам и аппаратам химической технологии / О. Флореа, О. Смигельский; пер. с рум. 3. М. Хаимского; под ред. С. 3. Когана. М .: Химия, 1971. 1971 с.

- 88. Фоменков С.А., Давыдов Д.А., Камаев В.А. Моделирование и автоматизированное использование структурированных физических знаний: монография. М.: Машиностроение-1, 2004. 278 с.
- 89. Зарипова В.М. Объектно-ориентированная модель базы знаний о физико-технических эффектах для системы концептуального проектирования новых элементов информационно-измерительных систем и систем управления // Прикаспийский журнал: управление и высокие технологии. 2013. № 1. с. 162–171.
- 90. Фоменков С.А., Колесников С.Г. Представление физических знаний в автоматизированном банке физических эффектов // Изв. вузов. Машиностроение. 1998. № 1–3. с. 55–61.
- 91. Камаев В.А., Фоменков С.А., Петрухин А.В., Давыдов Д.А. Архитектура автоматизированной системы концептуального проектирования СОФИ // Программные продукты и системы. 1999. № 2. с. 30–34.
- 92. Давыдов Д.А., Фоменков С.А. Автоматизированное проектирование линейных структур физических принципов действия технических систем // Машиностроитель. 2002. № 2. с. 33–35.
- 93. Гопта Е.А., Фоменков С.А., Карачунова Г.А. Автоматизация процесса линейного синтеза физического принципа действия // Изв. ВолгГТУ. 2010. Т. 11. № 9. с. 129–133.
- 94. Герасимов А.М., Колчин П.А., Фоменков С.А. Автоматизированная система поиска физических эффектов «Полезный эффект» // Программные продукты и системы. 2007. № 4. с. 38–39.
- 95. Гопта Е.А., Фоменков С.А., Карачунова Г.А. Использование свойств объекта в условиях совместимости физических эффектов // Вестн. компьютерных и информационных технологий. 2014. № 2. с. 22–26.
- 96. Гопта Е.А. Механизм генерирования инноваций: автоматизация процесса сетевого синтеза физического принципа действия // Качество. Инновации. Образование. 2013. № 4. с. 28–31.

- 97. Фоменков С.А., Колесников С.Г., Дворянкин А.М. Использование структурированных физических знаний для прогнозирования новых нанотехнических систем // Изв. ВолгГТУ. 2012. Т 4. № 13. с. 80–82.
- 98. Фоменков С. А. Построение математических моделей идентификации методом наименьших квадратов [Электронный ресурс] : метод. указания к лабораторной работе / сост. С. А. Фоменков, Д. И. Крыжановский. Волгоград : ВолгГТУ, 2010. 20 с.
- 99. Горин Ю.В., Землянский В.В. Создание новых технических решений на основе использования физических эффектов и явлений Методическое пособие для преподавателей образовательных учреждений Спо. Пенза: Пгта, Пку и Пт им. Е. Д. Басулина, 2005. 60 с.
- 100. Горин Ю.В. Указатель физических эффектов и явлений для использования при решении изобретательских задач [Электронный ресурс] Режим доступа: http://www.jlproj.org.
- 101. Авлукова, Ю.Ф. Основы автоматизированного проектирования : учебное пособие / Ю.Ф. Авлукова. Минск : Вышэйшая школа, 2013. 219 с.
- 102. П. м. 195501 Российская Федерация, МПК В04В3/00 Вертикальная центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, Н.В. Шибитова, М.А. Санина, Минь Тханг Ву; ФГБОУ ВО ВолгГТУ. 2020.
- 103. П. м. 195500 Российская Федерация, МПК В04В1/00, В04В3/00, В01D43/00 Центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, А.Е. Новиков, М.И. Филимонов, С.А. Фоменков, Д.М. Коробкин; ФГБОУ ВО ВолгГТУ. 2020.
- 104. Голованчиков, А.Б. Ultrafiltration Modeling Allowing for Axial Dispersion in a Solution under Purification / А.Б. Голованчиков, Н.А. Прохоренко, Минь Кыонг Доан // Theoretical Foundations of Chemical Engineering. 2019. Vol. 53, No. 2. p. 215–221.
- 105. Голованчиков, А.Б. Аппроксимация экспериментальных данных методом наименьших квадратов и методом наименьших относительных квадратов / А.Б. Голованчиков, Минь Кыонг Доан, Н.В. Шибитова // Энерго- и

ресурсосбережение: промышленность и транспорт. - 2019. - № 1 (26) Март. - с. 42-44.

- 106. П. м. 186247 Российская Федерация, МПК В04В3/06 Вертикальная подвесная центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, С.А. Фоменков, Д.М. Коробкин, Тхи Хуен Ву; ВолгГТУ. 2019.
- 107. П. м. 191345 Российская Федерация, МПК B04B3/00, B04B5/12, B04B7/08, B04B9/02 Вертикальная центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, А.Е. Новиков, М.И. Филимонов, Д.М. Баранов; ВолгГТУ. 2019.
- 108. Голованчиков, А.Б. Моделирование процесса ультрафильтрации с учётом продольного перемешивания очищаемого раствора / А.Б. Голованчиков, Н.А. Прохоренко, Минь Кыонг Доан // Теоретические основы химической технологии. 2019. Т. 53, № 2. с. 168-173.
- 109. П. м. 191306 Российская Федерация, МПК В04В3/06, В04В1/06 Фильтрующая центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, Н.А. Прохоренко, Н.В. Шибитова, С.А. Писанко; ВолгГТУ. 2019.
- 110. П. м. 177265 Российская Федерация, МПК В04В3/00, В04В5/10, В01D63/16, В04В9/14 Маятниковая центрифуга / А.Б. Голованчиков, М.И. Филимонов, В.И. Горбатенко, Н.А. Прохоренко, П.Э. Коворова, Минь Кыонг Доан; ВолгГТУ. 2018.
- 111. Моделирование и расчёт отстойной центрифуги с рециклом по фугату / А.Б. Голованчиков, Минь Кыонг Доан, А.Е. Новиков, М.И. Филимонов // Известия ВолгГТУ. Сер. Актуальные проблемы управления, вычислительной техники и информатики в технических системах. Волгоград, 2018. № 13 (223) Декабрь. с. 12-17.
- 112. Голованчиков, А.Б. Моделирование обратноосмотического процесса в фильтрующих сверхцентрифугах с учётом продольной диффузии / А.Б. Голованчиков, М.И. Филимонов, Минь Кыонг Доан // Энерго- и ресурсосбережение: промышленность и транспорт. 2018. № 1 (22) Март. с. 7-12.

- 113. Голованчиков, А.Б. Моделирование процесса обратного осмоса в фильтрующих центрифугах / А.Б. Голованчиков, М.И. Филимонов, Минь Кыонг Доан // Известия ВолгГТУ. Сер. Актуальные проблемы управления, вычислительной техники и информатики в технических системах. Волгоград, 2018. № 8 (218) август. с. 14-19.
- 114. Голованчиков А.Б. Моделирование процесса ультрафильтрации в центробежном поле / А.Б. Голованчиков, П.Э. Коворова, М.И. Филимонов, Минь Кыонг Доан // Химическая технология. 2018. Т. 19, № 4. с. 186-191.
- 115. Свид. о гос. регистрации программы для ЭВМ № 2018613321 от 7 марта 2018 г. Российская Федерация. Программа для расчёта критериев регрессионного анализа линейного уравнения / А.Б. Голованчиков, Минь Кыонг Доан, Т.А. Дулькин; ВолгГТУ. 2018.
- 116. Свид. о гос. регистрации программы для ЭВМ № 2018662076 от 26 сентября 2018 г. Российская Федерация. Программа для расчёта модуля для обеззараживания воды электрическим током / А.Б. Голованчиков, Н.О. Сиволобова, Минь Кыонг Доан, В.С. Артюшкина; ВолгГТУ. 2018.
- 117. Свид. о гос. регистрации программы для ЭВМ № 2018613318 от 7 марта 2018 г. Российская Федерация. Программа для расчёта параметров линейного уравнения методом наименьших относительных квадратов / А.Б. Голованчиков, Минь Кыонг Доан, Т.А. Дулькин; ВолгГТУ. 2018.
- 118. Свид. о гос. регистрации программы для ЭВМ № 2018662075 от 26 сентября 2018 г. Российская Федерация. Программа для расчёта процесса обратного осмоса с учётом продольной диффузии / А.Б. Голованчиков, Минь Кыонг Доан, Тхи Хуен Ву; ВолгГТУ. 2018.
- 119. Свид. о гос. регистрации программы для ЭВМ № 2018661567 от 10 сентября 2018 г. Российская Федерация. Программа для расчёта процесса ультрафильтрации с учётом продольной диффузии / А.Б. Голованчиков, Минь Кыонг Доан, Тхи Хуен Ву; ВолгГТУ. 2018.
- 120. ООО «НПО «ОРТЕХ-ЖКХ» [Электронный ресурс]. [2020]. Режим доступа :http://аквавелл34.рф/

- 121. П. м. 154660 Российская Федерация, МПК В01D61/14, В01D63/16, В01D61/18 Устройство для ультрафильтрации жидкостей / Н.А. Пятаев, О.В. Минаева, П.С. Петров, А.В. Кокорев, К.Г. Гуревич, А.В. Заборовский; патентообладатель: Мордовский государственный университет им. Н.П. Огарёва. 2015.
- 122. П. м. 174208 Российская Федерация, МПК F04D29/70, B01D63/00 Центробежный насос / А.Б. Голованчиков, Н.А. Прохоренко, Тхи Хуен Ву, Минь Кыонг Доан, М.И. Филимонов; ВолгГТУ. 2017.
- 123. П. м. 198531 Российская Федерация, МПК В04В1/00 [и др.] Центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, Н.В. Шибитова, С.А. Фоменков, Д.М. Коробкин; ФГБОУ ВО ВолгГТУ. 2020.
- 124. Сравнение точности аппроксимации экспериментальных данных методом наименьших относительных квадратов с методом наименьших квадратов / А.Б. Голованчиков, М.К. Доан, А.В. Петрухин, Н.А. Меренцов // Моделирование, оптимизация и информационные технологии : электронный научный журнал. 2020. Т. 8, № 1 (28). 9 с.

ПРИЛОЖЕНИЕ 1 СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

Статьи в журналах, рекомендуемых ВАК

- Моделирование обратноосмотического процесса с диффузионной структурой потока по очищаемому раствору / А.Б. Голованчиков, К.В. Черикова, Минь Кыонг Доан // Экологические системы и приборы. 2017. № 6. с. 32-40.
- Моделирование процесса ультрафильтрации в центробежном поле / А.Б. Голованчиков, П.Э. Коворова, М.И. Филимонов, Минь Кыонг Доан // Химическая технология. 2018. Т. 19, № 4. с. 186-191.
- 3. Моделирование процесса обратного осмоса в фильтрующих сверхцентрифугах / А.Б. Голованчиков, М.И. Филимонов, Минь Кыонг Доан // Известия ВолгГТУ. Сер. Актуальные проблемы управления, вычислительной техники и информатики в технических системах. Волгоград, 2018. № 8 (218) август. с. 14-19.
- 4. Сравнение точности аппроксимации экспериментальных данных методом наименьших относительных квадратов с методом наименьших квадратов / А.Б. Голованчиков, М.К. Доан, А.В. Петрухин, Н.А Меренцов // Моделирование, оптимизация и информационные технологии. Воронеж, 2020. Т.8, №1. 9 с.
- Моделирование ультрафильтрационного процесса на рулонных мембранах в центробежном поле / А.Б. Голованчиков, М.К. Доан, Н.А. Меренцов // Моделирование, оптимизация и информационные технологии. Воронеж, 2020.
 Т.8, №1. 10 с.

Статьи в журналах SCOPUS

6. Ultrafiltration Modeling Allowing for Axial Dispersion in a Solution under Purification / А.Б. Голованчиков, Н.А. Прохоренко, Минь Кыонг Доан // Theoretical Foundations of Chemical Engineering. - 2019. - Vol. 53, No. 2. – p. 215–221.

Монография

7. Физическое и математическое моделирование процессов центрифугирования: монография / А.Б. Голованчиков, А.Е. Новиков, М.И. Филимонов, Минь Кыонг Доан; ВолгГТУ. - Волгоград, 2018. - 155 с. (с. 59-84, с. 115-118, с. 125-127).

Свидетельства о государственной регистрации программы для ЭВМ

- 8. Свид. о гос. регистрации программы для ЭВМ № 2018661567 от 10 сентября 2018 г. Российская Федерация. Программа для расчёта процесса ультрафильтрации с учётом продольной диффузии / А.Б. Голованчиков, Минь Кыонг Доан, Тхи Хуен Ву; ВолгГТУ. 2018.
- 9. Свид. о гос. регистрации программы для ЭВМ № 2018662075 от 26 сентября 2018 г. Российская Федерация. Программа для расчёта процесса обратного осмоса с учётом продольной диффузии / А.Б. Голованчиков, Минь Кыонг Доан, Тхи Хуен Ву; ВолгГТУ. 2018.
- 10. Свид. о гос. регистрации программы для ЭВМ № 2018613318 от 7 марта 2018 г. Российская Федерация. Программа для расчёта параметров линейного уравнения методом наименьших относительных квадратов / А.Б. Голованчиков, Минь Кыонг Доан, Т.А. Дулькин; ВолгГТУ. 2018.
- 11. Свид. о гос. регистрации программы для ЭВМ № 2018613321 от 7 марта 2018 г. Российская Федерация. Программа для расчёта критериев регрессионного анализа линейного уравнения / А.Б. Голованчиков, Минь Кыонг Доан, Т.А. Дулькин; ВолгГТУ. 2018.

Статьи в журналах и сборниках

12. Моделирование процесса ультрафильтрации с учётом структуры потока очищаемого раствора / А.Б. Голованчиков, Т.Х. Ву, П.Э. Коворова, М.К.

- Доан // Энерго- и ресурсосбережение: промышленность и транспорт. 2017. № 4 (21). с. 37-40.
- 13. Моделирование обратноосмотического процесса в фильтрующих сверхцентрифугах с учётом продольной диффузии / А.Б. Голованчиков, М.И. Филимонов, Минь Кыонг Доан // Энерго- и ресурсосбережение: промышленность и транспорт. 2018. № 1 (22) Март. с. 7-12.
- 14. Аппроксимация экспериментальных данных методом наименьших квадратов и методом наименьших относительных квадратов / А.Б. Голованчиков, Минь Кыонг Доан, Н.В. Шибитова // Энерго- и ресурсосбережение: промышленность и транспорт. 2019. № 1 (26) Март. с. 42-44.

Патенты на полезные модели

- 15. П. м. 174208 Российская Федерация, МПК F04D29/70, B01D63/00 Центробежный насос / А.Б. Голованчиков, Н.А. Прохоренко, Тхи Хуен Ву, Минь Кыонг Доан, М.И. Филимонов; ВолгГТУ. 2017.
- 16. П. м. 177265 Российская Федерация, МПК В04В3/00, В04В5/10, В01D63/16, В04В9/14 Маятниковая центрифуга / А.Б. Голованчиков, М.И. Филимонов, В.И. Горбатенко, Н.А. Прохоренко, П.Э. Коворова, Минь Кыонг Доан; ВолгГТУ. 2018.
- 17. П. м. 191306 Российская Федерация, МПК B04B3/06, B04B1/06 Фильтрующая центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, Н.А. Прохоренко, Н.В. Шибитова, С.А. Писанко; ВолгГТУ. 2019.
- 18. П. м. 191345 Российская Федерация, МПК B04B3/00, B04B5/12, B04B7/08, B04B9/02 Вертикальная центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, А.Е. Новиков, М.И. Филимонов, Д.М. Баранов; ВолгГТУ. 2019.
- 19. П. м. 186247 Российская Федерация, МПК В04В3/06 Вертикальная подвесная центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, С.А. Фоменков, Д.М. Коробкин, Тхи Хуен Ву; ВолгГТУ. 2019.

20. П. м. 195500 Российская Федерация, МПК B04B1/00, B04B3/00, B01D43/00 Центрифуга / А.Б. Голованчиков, Минь Кыонг Доан, А.Е. Новиков, М.И. Филимонов, С.А. Фоменков, Д.М. Коробкин; ВолгГТУ. – 2020.

Апробация работы на научных конференциях

- 1. Доан, Минь Кыонг. Моделирование процесса ультрафильтрации на рулонных мембранах в центробежном поле / Минь Кыонг Доан // XXIV Региональная конференция молодых учёных и исследователей Волгоградской области (г. Волгоград, 3-6 декабря 2019 г.) : сб. материалов конф. / редкол.: С. В. Кузьмин (отв. ред.) [и др.] ; Комитет образования, науки и молодёжной политики Волгоградской обл., ГБУ ВО «Центр молодёжной политики», Волгоградский гос. технический ун-т. Волгоград, 2020. с. 11-12.
- 2. Минь Кыонг. Математическая Доан, обработка результатов методом наименьших методом эксперимента квадратов И наименьших относительных квадратов / Минь Кыонг Доан, А.Б. Голованчиков // Технологии и оборудование химической, биотехнологической и пищевой промышленности : материалы XII всерос. науч.-практ. конф. студентов, аспирантов и молодых учёных с междунар. участием (г. Бийск, 22-24 мая 2019 г.) / редкол.: А. Н. Блазнов [и др.]; Бийский технологический ин-т (филиал) ФГБОУ ВО «Алтайский гос. технический ун-т им. И. И. Ползунова». - Бийск, 2019. - с. 53-56.
- 3. Доан, Минь Кыонг. Разработка модифицированной конструкции фильтрующей центрифуги / Минь Кыонг Доан, А.Б. Голованчиков // Взаимодействие предприятий и вузов наука, кадры, новые технологии : сб. докл. XV межрегион. науч.-практ. конф., посвящ. 65-летию города Волжского (г. Волжский, 15-16 мая 2019 г.) / под ред. Е. В. Гончаровой ; ВПИ (филиал) ВолгГТУ. Волжский, 2019. с. 50-53. URL : http://lib.volpi.ru.
- 4. Доан, М.К. Моделирование ультрафильтрационного процесса на основе дифференциальных уравнений материального баланса / М.К. Доан, Т.Х. Ву, А.Б. Голованчиков // Актуальные вопросы химической технологии и защиты

окружающей среды : сб. материалов VII всерос. конф. с междунар. участием (г. Чебоксары, 19-20 апреля 2018 г.) / редкол.: К.В. Липин (отв. ред.) [и др.] ; ФГБОУ ВО «Чувашский гос. ун-т им. И.Н. Ульянова», ПАО «Химпром», Чувашское региональное отделение РХО им. Д.И. Менделеева, Химико-фармацевтический факультет. - Чебоксары, 2018. - с. 23-24.

- 5. Разработка модифицированной конструкции центробежного насоса для процесса ультрафильтрации / А.Б. Голованчиков, Тхи Хуен Ву, Минь Кыонг Доан, Н.А. Прохоренко // Пятая всероссийская студенческая научно-техническая конференция «Интенсификация тепло-массообменных процессов, промышленная безопасность и экология», посвящ. 90-летию со дня рожд. Поникарова Ивана Ильича (г. Казань. Респ. Татарстан, 23-25 мая 2018 г.) : материалы конф. / Казанский национальный исследовательский технологический ун-т, Ин-т химического и нефтяного машиностроения. Казань, 2018. с. 225-227.
- 6. Моделирование процесса ультрафильтрации с учётом структуры потока очищаемого раствора / Т.Х. Ву, М.К. Доан // ХХІІ Региональная конференция молодых учёных Волгоградской области (г. Волгоград, 21-24 ноября 2017 г.) : тез. докл. / редкол.: А.В. Навроцкий (отв. ред.) [и др.] ; Комитет молодёжной политики Волгоградской обл., Совет ректоров вузов Волгоградской обл., ВолгГТУ. Волгоград, 2017. с. 14-16.
- 7. Перспективные конструкции мембранных аппаратов / Минь Кыонг Доан, А.Б. Голованчиков, А.В. Петрухин // Булатовские чтения : материалы IV междунар. науч.-практ. конф. (31 марта 2020 г.) : [посвящается памяти акад. Анатолия Ивановича Булатова] : сб. ст. В 7 т. Т. 5. Химическая технология и экология в нефтяной и газовой промышленности / гл. ред.: О. В. Савенок ; ПАО «ЛУКОЙЛ». Краснодар, 2020. с. 83-85.

ПРИЛОЖЕНИЕ 2 АКТ ИСПОЛЬЗОВАНИЯ МЕТОДИКИ РАСЧЕТА **МЕМБРАННЫХ ПРОЦЕССОВ**

ООО «НПО « ОРТЕХ-ЖКХ»

www.ubas-ug.ru 400002, г.Волгоград, ул. Казахская, д.43 ИНН: 3460008942, Р/С: 40702810100000005610 в ОАО «АКБ «КОР» г. Волгоград, КПП: 346001001, К/С: № 33010181010000000799, БИК: 041806799 тел: (8442) 41-15-06, моб. +7-906-172-54-44; +7-961-075-08-08 E-mail: ubas-ortekh@mail.ru

Акт использования

результатов диссертационной работы

Доан Минь Кыонг на тему «Автоматизация проектирования мембранных аппаратов для процессов ультрафильтрации и обратного осмоса с учетом структуры потока очищаемого раствора»

Алгоритмы и программы для расчета ультрафильтрационного мембранного аппарата (№ 2018661567 от 10.09.2018 «Программа для расчета процесса ультрафильтрации с учетом продольной диффузии») и мембранного аппарата обратного осмоса (№ 2018661567 от 26.09.2018 «Программа для расчета процесса обратного осмоса с учетом продольной диффузии»), а также патенты Российской Федерации на полезную модель:

- 1) № 174208 от 06.10.2017 «Центробежный насос»;
- 2) № 177265 от 14.02.2018 «Маятниковая центрифуга»;
- 3) № 191306 от 01.08.2019 «Фильтрующая центрифуга»;
- 4) № 191345 от 01.08.2019 «Вертикальная центрифуга»;
- 5) № 186247 от 14.01.2019 «Вертикальная подвесная центрифуга»;
- 6) № 195500 от 29.01.2020 «Центрифуга»;

в которых на перфорированных роторах фильтрующих центрифуг и боковой стенке центробежного насоса закреплены полупроницаемые мембраны, приняты для использования в расчетах и при проектировании мембранных аппаратов.

> «Научно-Промышленно

Объединение

Заместитель генерального директора

«XXЖ-XTTQ» ОПН» ООО

по производству

ПРИЛОЖЕНИЕ З АКТ ВНЕДРЕНИЯ В УЧЕБНЫЙ ПРОЦЕСС

УТРЕРЖДАЮ

проректор по учебной работе

Волгоградского

государственного

технического университета

Гоник И.Л.

2020 г.

АКТ ВНЕДРЕНИЯ

результатов научно-исследовательной работы в учебный процесс

Комиссия в составе:

председатель

- д.т.н., зав. каф. ПАХПП Новиков А.Е.

члены комиссии

- д.т.н., проф. каф. ПАХПП Голованчиков А.Б.

- к.т.н., доц. каф. ПАХПП Меренцов Н.А.

настоящим актом подтверждает, что результаты исследований, проведённых аспирантом Доан Минь Кыонг в ходе выполнения им кандидатской диссертационной работы «Автоматизация проектирования мембранных аппаратов для процессов ультрафильтрации и обратного осмоса с учетом структуры потока очищаемого раствора», внедрены в Волгоградском государственном техническом университете на кафедре «Процессы и аппараты химических и пищевых производств» в учебном процессе в рамках учебных дисциплин «Процессы и аппараты химической технологии», «Моделирование энерго- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии», «Техника эксперимента», «Моделирование химико-технологических процессов», «Подготовка магистерской диссертации». В частности, в рамках перечисленных выше учебных дисциплин используются:

- Программа для расчёта критериев регрессионного анализа линейного уравнения (авторы Доан Минь Кыонг, Голованчиков А.Б. и др.) защищена свидетельством Российской Федерации государственной регистрации программы для ЭВМ № 2018613321 от 7 марта 2018 г.

ПРИЛОЖЕНИЕ 4 ПРОГРАММА ДЛЯ РАСЧЕТА ПРОЦЕССА УЛЬТРАФИЛЬТРАЦИИ С УЧЁТОМ ПРОДОЛЬНОЙ ДИФФУЗИИ

Program difyltra \$debug Raschet yltrafiltratsii s ychetom prodolnoj diffuzii real k,nu,lp,lk,lkc,lpc,lpcb,LGH dimension dp(10), a(10), dd(10), fi(10), z3(10), gr3(10), x3(10), #xp3(10)write(*,*)'Vvesti massivy diametrov por "dp,(mk)",konstant (kg/(kv.m*MPa*s))", istinnoj #pronitsaemosti "a, # selektivnosti membran "fi" i chislo parametrov v etih massivah # "n" data dp/3,5,10,15,17.5,20,30,45,2*1/,a/0.0015,0.0033,0.017, #0.037,0.065,0.075,0.134,0.37,2*1/,fi/0.987,0.995,0.998, #0.9985,0.999,0.9995,0.9995,0.9995,2*1/ write(*,*)'Vvesti variryemyi parametr - chislo Pekle prodolnoj #diffuzii"Pe"v predelah ot 1.do 30.' read(*,*) Pe write(*,*)'Vvesti diametr molekul "dm,(m)",prouzvoditelnost po #ochischaemoj zhidkosti "gH,(kyb.m/c)" i nachalnuyu kontsentratsiya "xH,(%massovye)",kontsentratsii v retantre, #"xk(%masovye)" i v permeate "xp,(%massjvye)", perepad dayleniya # na membrane "p,(MPa)",plotnost "ro,(kg/kub.m) i vyazkost #ochischaemoj zhidkosti "Pa*s" ishirinu membrany "b,(m)" write(*,*)'Zadan massiv otnoshenij "dd(i)" diametra molekyl k #diametru por v membranax paznyh tipov' n=8dm=7gH = 0.2xH=0.015xk = 0.15xp = 0.003p = 0.2ro = 1037nu=9.65e-07vio=8.99e-04 b=1. write(*,*)'Tipovoj inzhenernyj metod rascheta yltrafiltratsii' do 2 i=1.10dd(i)=0.5+0.1*(i-1)2 continue

k=xk/xH

```
j=n
3 d=dm/dp(j)
 if(d.gt.0.5) go to 4
 j=j-1
 go to 3
4 i = 1
5 \text{ if}(d.lt.dd(i)) \text{ go to } 6
 i=i+1
 if(i.gt.9.5) go to 7
 go to 5
6 f=fi(i-1)+(d-dd(i-1))*(fi(i)-fi(i-1))/0.1
 write(*,*)'j=',j,'f=',f,'a=',a(i)
7 xpk=xH*(k**(1/f)-k)/(k**(1/f)-1)
 write(*,*)'xpk=',xpk,' xp=',xp
 if(xpk.lt.xp) go to 8
j=j-1
 go to 3
8 \text{ Go}=a(j)*p
 vi=ro*nu
 G=Go*vio/vi
 Lp=gH*(1-k**(-1/f))
 Lk=gH-Lp
 Fm=Lp/G
 LGH=Lp/GH
 write(*,*)'Rezultaty raschetov udelnoj proizvoditelnosti vybrannoj
# membrany dlya zadannogo perepada davleniya v vode
#"Go,(kg/kv.m*s)" i v rastvore
                                   "G,(kg/kv.m*s)",dinamicheskaya
#vyazkost rastvora "vi,(Pa*s)",stepen
#kontsentrirovaniya "k",istinnaya selektivnost membrany "f",
#otnosenie proizvoditelnosti po permiatu k nachalnoj
        proizvoditelnosti "LGH"
 write(*,*)'Go=',Go,' G=',G,' vi=',vi,' k=',k,' f=',f,' LGH=',LGH
 write(*,*)'Rezultaty raschetov nomera vybrannoj membrany "j",
#konechnyh kontsentratsij v permeate "xpk,(%mass)" i retante
#"xk,(%mass),"proizvoditelnostej po permeatu "lp,(kg/s)" i
                          poverhnosti membrany "Fm,(kv.m)" i
# retantu "lk,(kg/s)",
# konstanty pronitsaemosti vybrannoj membrany
# "a,(kg/kv.m*s*MPa)""
 write(*,*)'j=',j,' xpk=',xpk,' xk=',xk,' lp=',lp,' lk=',lk,
\#' Fm=',fm,' a=',a(i)
 pause
 write(*,*)'Rezhim idealnogo vytesneniya'
 write(*,*)'Profili kontsentratsij po otnositelnoj dline membrany
#"z" v retante "x",
                       srednej "xp" i lokalnoj "xpl" v
```

```
#permeate i gradient kontsentratsii v retante "gr" pri idealnom
 # vytesnenii'
 write(*,1)
1 format(2x,'
                                                                            _')
 write(*,10)
10 format(3x,'i',4x,'z',7x,'x',9x,'xp',10x,'xpl',8x,'gr')
 write(*,1)
 dz = 0.1
 do 15 i=1.10
 z=i*dz
 x=xH*(1/(1-LGH*z))**f
 xp=(xH/LGH)*(1-(1-LGH*z)**(1-f))/z
 xpl=(1-f)*x
 gr=LGH*f*x/(1-LGH*z)
 write(*,9)i,z,x,xp,xpl,gr
9 format(3x,i2,2x,f3.1,3x,f6.4,3x,f9.7,3x,f9.7,3x,f6.3)
15 continue
 write(*,1)
 gbx=LGH*f*xH
 gbk=LGH*f*xk/(1-LGH)
 write(*,*)'Gradient kontsetratsij na vhode i vyhode,gbx=',gbx,
 #' gbk=',gbk
 write(*,*)'Rezhim idealnogo peremeshivaniya'
 write(*,*)'Rezultaty raschetov pashoda po retantu "lkc,(kg/s)",
 #permeatu "lpc,(kg/s)", konechnoj kontsentratsii v permeate "xpc,
 #(%mass.)",poverhnosti Fmc,(kv.m)" i dliny membrany "zkc,(m)"
 lpc=GH*(xk-xH)/(f*xk)
 lkc=GH-lpc
 xpc = (1-f)*xk
 Fmc=lpc/G
 zkc=Fmc/b
 write(*,*)'lkc=',lkc,' lpc=',lpc,' xpc=',xpc,' Fmc=',Fmc,' zkc=',
 #zkc
 pause
 write(*,*)'Rezhim prodolnoj diffuzii (prodolnogo peremeshivanija)'
 write(*,*)'Proizvoditelnosti po permeatu pri idelnom smeshenii
 #"lpc,(kg/s)" i idealnom vytesnenii "lp,(kg/s)",srednee znachenie
 # proizvoditelnosti po permeatu "lpcb,(kg/s)" i protsent
 # otklonenija ot srednej proizvoditelnosti,"dpo"
 lpcb=(lpc+lp)/2
 dpo=100*(lpc-lp)/lpcb
 write(*,*)'lpc=',lpc,' lp=',lp,' lpcb=',lpcb,' dpo=,%',dpo
24 i2 = 0
 dz = 0.001
```

```
xb=xH
 write(*,*)'Pe=',Pe
 dxb = xH/100000
31 \text{ xb}=\text{xb}+\text{dxb}
 i2 = i2 + 1
 grb=(xb-xH)*Pe
 i1 = 0
 gr1=grb
 x1=xb
 sx=0
 do 27 i=1,1000
 z2=dz*i
 sx=sx+x1
 gr2=gr1+Pe*(1-LGH*z2)*gr1*dz-LGH*Pe*f*x1*dz
 x2=x1+gr2*dz
 xp=(1-f)*sx/i
 i1=i1+1
 if(i1.lt.99.5) go to 29
 i1 = 0
 j=i/100
 z3(i)=0.1*i
 gr3(j)=gr2
 x3(j)=x2
 xp3(j)=xp
29 gr1=gr2
 x1=x2
27 continue
 xkr=x2
 xkp=xp
 if(xkr.lt.xk) go to 31
 write(*,*)'Rezultaty raschetov konechnyh kontsentratsij v
 #retante "xkr,(%mass)", permeate "xkp,(%mass)",vhodnoj
 #kontsetratsii v ishodnom rastvore "xb,(%mass)" i gradienta
 #kontsentratsii v ishodnom rastvore "grb,(%mass)" pri zadannom
 #chisle Pekle prodolnoj diffuzii "Pe"
 write(*,*)'xkr=',xkr,' xkp=',xkp,' xb=',xb,' grb=',grb,' Pe=',
 #Pe
 write(*,1)
 write(*,35)
35 format(5x,'z',11x,'gr',11x,'x',13x,'xp')
 write(*,1)
 do 33 j=1,10
 i=100*i
 write(*,34) z3(j),gr3(j),x3(j),xp3(j)
```

```
34 format(5x,f3.1,7x,f6.4,7x,f6.4,7x,f9.7)
33 continue
write(*,1)
pause
end
```

ПРИЛОЖЕНИЕ 5 ПРОГРАММА ДЛЯ РАСЧЕТА ПРОЦЕССА ОБРАТНОГО ОСМОСА С УЧЁТОМ ПРОДОЛЬНОЙ ДИФФУЗИИ

```
Program Osmosdif
$debug
   real mp,k,M,p,p1,p2,lmd
   dimension G0(10), am(10), bm(10), fu(10), xf(10), Gf(10), Gfc(10),
   \#x(10),p(10)
   write(*,*)'Vvesti pasportnye dannye membran MGA: udelnaya
                        "G0(kg/kb,m*c*MPa)",koeffitsienty dlya
  #proizvoditelnost
   #rascheta istinnoj selektivnosti
                                   "am(i)" i "bm(i)",a takzhe
  #chislo membran "n"
   write(*,*)'Vvesti zavisimost osmoticheskogo davleniya "p(MPa)" ot
  #kontsentratsii molekul A "x(kgA/kgG)""
   data G0/0.00417,0.00278,0.00167,0.00111,6*1/,am/4.323,5.179,5.78,
   #7.342,6*1/,bm/1.729,2.093,2.4,3.024,6*1/
   data x/0..1.098,2.1716,3.2224,4.2509,5*1/,p/0.,0.64,1.29,1.96,
  #2.65,5*1/
   write(*,*)'Vvesti ishodnye dannye: chislo Pekle prodolnoj diffuzii
  # "Pe",nachalnuyu
                         proizvoditelnost po rastvoru "GH(kg/s)",
  #nachalnuyu kontsentratsiyu
                                    rastvorennogo veschestva
  #"kgA/kgG)" v protsentax,ego konechnuyu
                                                    kontsentratsiyu
  # "xk1(molA/litr)",dopuskaemuyu dolyu izvlekaemogo komponenta A v
  #permeate "df"
   write(*,*)'Vvesti spravochnye dannye:molekulyarnuyu massu
                         "M(kgA/kmolA)",plotnost rastvora
  # komponenta A
  #"ro(kg/kub.m)",rabochee davlenie
                                       "dp(MPa)",teploty gigrotatsii
  # ionov v molekule: kationa"dH1(kDzh/mol)" i aniona"dH2(kDzh/mol)",
  #chislo ionov v molekule: kationov "n1" i anionov "n2"
   write(*,*)'Vvesti Pekle "Pe" v predelah ot 0.1 (blizko k idealnomu
   # peremesivaniyu) do 18 (blizko k idealnomu vytesneniyu)'
   write(*,*)'Pe='
   read(*,*) Pe
   n=4
   GH=5.56
   xH = 0.8
   xk1=0.3
   df = 0.01
   M = 111
   ro=1023.7
   dp=5
   dH1=1616
   dH2 = 352
```

```
n1=1
 n2 = 2
 if(n1.gt.1.5) go to 22
 if(n2.gt.1.5) go to 23
 mp = 0.51
 go to 30
23 \text{ mp} = 0.47
 go to 30
22 if(n1.gt. 2.5) go to 25
 if(n2.gt.1.5) go to 24
 mp = 0.47
 go to 30
24 mp=0.33
 go to 30
25 if(n2.gt.1.5) go to 26
 mp = 0.4
 go to 30
26 \text{ mp} = 0.33
30 write(*,*)'Raschetnye parametry: pokazatel stepeni pri ione s
                       gidratatsii "mp",konechnaya
 #bolshoj teplotoj
 #kontsentratsiya v retante
                                  "xk(kgA/kgG)" i nachalnyj
 #rashod komponenta A "GHc(kgA/c)", stepen
 #kontsentrirovaniya rastvora "k",funktsiya teplot gidratstsii
 #molekuly komponenta A "fdH",istinnaya selektivnost membran
 #"fu(j)", kontsentratsiya komponenta A v permeate
 #"xf(j)(kgA/kgF)",rashod komponenta A s permeatom "Gfc(j)(kgA/s)",
 #nomer rabochej membrany "jr"
 write(*,27)
                                                                           ('
27 format(2x,'
 write(*,28)
28 format(3x,'j',6x,'fu',11x,'xf',10x,'Gf',9x,'Gfc')
 write(*,27)
 xk=100*xk1*M/ro
 GHc=GH*xH/100
 k=xk/xH
 Zn=4.187
 if(dH1.gt.dH2) go to 21
 dHb=dH2
 dHm=dH1
 go to 15
21 dHb=dH1
 dhm=dH2
15 \text{ fdH=dHm*dHb**mp/Zn**}(1.+\text{mp})
 do 2 j=1,n
```

```
fu(j)=1-exp(2.3*am(j)-bm(j)*alog(fdH))
 xf(j)=(xH/100)*(exp(alog(k)/fu(j))-k)/(exp(alog(k)/fu(j))-1)
 Gf(j)=GH*(1-exp((-alog(k))/fu(j)))
 Gfc(j)=Gf(j)*xf(j)
 write(*,3)j,fu(j),xf(j),Gf(j),Gfc(j)
3 format(3x,i1,5x,f5.3,3x,e12.5,3x,f7.4,4x,f7.5)
2 continue
 write(*,27)
 do 5 = 1,n
 dfc=Gfc(j)/GHc
 if(dfc.lt.df) go to 4
5 continue
4 \text{ jr}=\text{j}
 Gfcr=Gfc(i)
 Gfr=Gf(i)
 xfr=xf(i)
 fur=fu(i)
 Gw=G0(i)
 write(*,6) mp,xk,GHc,k,fdH,dfc,fur,xfr,Gw,jr
6 format(2x,'mp=',f4.2,2x,'xk=',f6.3,2x,'GHc=',f7.5,2x,'k=',f5.2,
#2x,'fdH=',f7.2,2x,'dfc=',f6.4,2x,'fur=',f5.3,26x,'xfr=',f8.6,2x,
\#'Gw=Gor=',f7.5,2x,'jr=',i1)
 j=1
7 if(x(i).gt.xH) go to 8
 j=j+1
 go to 7
8 p1=p(j-1)+(xH-x(j-1))*(p(j)-p(j-1))/(x(j)-x(j-1))
9 if(x(j).gt.xk) go to 10
 j=j+1
 go to 9
10 p2 = p(j-1) + (xk-x(j-1))*(p(j)-p(j-1))/(x(j)-x(j-1))
 bo=(p2-p1)/(xk-xH)
 ao = ((p1+p2)-bo*(xH+xk))/2
 G1=Gw*(1-p1/dp)
 G2=Gw*(1-p2/dp)
 G=(G1+G2)/2
 F=Gfr/G
 write(*,*)'Koeffitsienty "ao" i "bo" linejnogo uravneniya
# "p=ao+bo*x(i)"
                        zavisimosti osmoticheskogo davleniya
# "p(MPa)" ot kontsentratsii
#"x(j)(kgA/kgG)" komponenta A i osmoticheskie
#davleniya,"p1(MPa)" i "p2(MPa)" dlya kontsentratsij"xH" i "xk",
#srednyaya udelnaya prouzvoditelnost po filtratu"G(kgGf/kb.m*s)"
# i
         poverhnost membrany "F(kv.m)"
```

```
write(*,12) ao,bo,p1,p2,G,F
12 format(2x,'ao=',f6.4,2x,'bo=',f6.4,2x,'p1=',f5.2,2x,
 # 'p2=',f5.2,2x,'G=',F7.5,2x,' F=',f8.1)
 pause
 write(*,*)'Raschet tehnologucheskih i geometricheskih parametrov
 #apparata idealnogo
                         vytesneniya'
 write(*,*)'Integralnoe usrednenie prouzvodutelnosti po filtratu
 #(permeatu) "Gfk(kgGf/s)" i retantu "Gk(kgG/s)"
 Gfk=GH*(1-(xH/xk)**(1/fur))
 Gk=GH-Gfk
 xfk=(GH*xH-Gk*xk)/Gfk
 write(*,18) Gfk,Gk,xfk
18 format(3x, 'Gfk=', f5.3, 3x, 'Gk=', f5.3, 3x, 'xfk=', f6.4)
 sx=0
 sGm=0
 sGxf=0
 i2 = 0
 write(*,*)'zavisimosti kontsentratsij komponenta A v rastvore
 #"xb(kgA/kgG)", lokalnoj "xfb(kgA/kgGf)" i srednej v
 #permeate "xfc(kgA/kgGf)" i udelnoj proizvoditelnosti po
 #permeatu "Gm(kgGf/kb.m*s)" ot ploschadi membrany "Fbi(kv.m)"
 write(*,27)
 write(*,31)
31 format(5x,'i',7x,'xb',9x,'xfb',8x,'xfc',8x,'Gm')
 write(*,27)
 dz = 0.01
 do 11 i=1,100
 z=i*dz
 xb=xH/(1-(Gfk/GH)*z)**fur
 Gm=Gw*(1-(ao+bo*xb)/dp)
 xfb=(1-fur)*xb
 sGm=sGm+Gm
 sGxf=sGxf+Gm*xfb
 xfs=sGxf/sGm
 i2 = i2 + 1
 if(i2.lt.9.5) go to 11
 i2 = 0
 write(*,32) i,xb,xfb,xfs,Gm
32 format(3x,i3,4x,f6.3,5x,f6.4,5x,f6.4,3x,f7.5)
11 continue
 write(*,27)
 Gfbs=sGm/100
 Fbk=Gfk/Gfbs
 Gbk=Gk
```

```
Gbfk=Gfk
 xbk=xb
 xbfk=xfs
 write(*,*)'Obschaya poverhnost membrany "Fbk(kv.m)",
                        retantu"Gbk(kgG/s)" i permeatu
 #proizvoditelnosti po
 #"Gbfk(kgGf/s)",konechnye
                                     kontsentratsii
 #komponenta A v retantre "xk(kgA/kgG)" i permeate "xbfk(kgA/kgGf)"
 # po differentsialnomu metodu raschetov'
 write(*,29) Fbk,Gbk,Gbfk,xbk,xbfk
29 format(2x, 'Fbk=', f7.1, 2x, 'Gbk=', f6.3, 2x, 'Gbfk=', f6.3, 2x,
 \#2x,'xbk=',f7.5,2x,'xbfk=',f7.5
 write(*,*)'Raschet apparata idealnogo peremeshivaniya po retantu'
 write(*,*)'Proizvoditelnosti po retantu "Gkc(kgG/s)" i permeatu
 #"Gfkc(kgGf/s)",
 #konechnaya kontsentratsiya komponenta A v permeate"xfc(kgA/kgGf)"
 #i ploschad poverhnosti membrany "Fc(kb.m)"
 Gfs=G2
 Gkc=GH*(xH-(1-fur)*xk)/(fur*xk)
 Gfkc=GH-Gkc
 xfc=(1-fur)*xk
 Fc=Gfkc/Gfs
 write(*,34) Gkc,Gfkc,xfc,Fc
34 format(2x, 'Gkc=', f5.3, 2x, 'Gfkc=', f5.3, 2x, 'xfc=', f7.5, 2x, 'Fc=',
 #f7.1)
 write(*,*)'Raschet parametrov po diffuzionnoj modeli'
 write(*,*)'Proizvoditelnosti po filtratu "Gfd(kgGf/s) i retantu
                      kontsentrstsiya komponenta A
 #"Gkd(kgG/s)",
 #"xfkd(kgA/kgGf)"na vyhode po filtratu (permeatu)
 #"xfkd(kgA/kgGf)""
 Gfd=Gfk+(Gfkc-Gfk)*(18-Pe)/17.9
 Gkd=GH-Gfd
 Gfbc=Gfd/GH
 xfkd=(GH*xH-Gkd*xk)/Gfd
 write(*,38) Gfd,Gkd,xfkd
38 format(2x,'Gfd=',f5.3,2x,'Gkd=',f5.3,2x,'xfkd=',f7.5)
 write(*,*) 'Gfk=',Gfk,' Gfkc=',Gfkc
 pause
 a2=xH
 b2=xk
35 \text{ xbx} = (a2+b2)/2
 dz = 0.01
 gbx=Pe*(xbx-xH)
 i1 = 0
 x1=xbx
```

```
xf1=(1-fur)*x1
 g1=gbx
 sGxf=0
 sGm=0
 write(*,*)'Zavisimosti kontsentratsij komponenta A v retante
 #"x(kgA/kgG)",lokalnoj "xf(kgA/kgf)" i srednej "xfs(kgA/kgGf)"
 # v permeate (filtrate) i udelnogo
                                  rashoda filtrata
 #"Gm(kgGf/kb.m*s)" ot bezrazmernoj normirovannoj poverhnosti
 # membrany "z"
 write(*,27)
 write(*,47)
47 format(3x,'z',6x,'x',11x,'xf',9x,'xfs',9x,'Gm')
 write(*,27)
 do 16 i=1,100
 Gm=Gw*(1-(ao+bo*x1)/dp)
 sGm=sGm+Gm
 sGxf=sGxf+Gm*xf1
 xfs=sGxf/sGm
 i1=i1+1
 z=dz*i
 g2=g1+Pe*(1-Gfbc*z)*g1*dz-Pe*Gfbc*fur*x1*dz
 x2=x1+g1*dz
 xf2=(1-fur)*x2
 if(x2.lt.xk) go to 36
 b2=xbx
 go to 35
36 if(i1.lt.9.5) go to 17
 i1 = 0
 write(*,48) z,x2,xf1,xfs,Gm
48 format(2x,f3.1,3x,f6.4,6x,f6.4,5x,f6.4,5x,f8.6)
17 g1 = g2
 x1=x2
 xf1=xf2
16 continue
 xkn=x2
 gkn=g2
 Gmd=sGm/100
 Fmd=Gfd/Gmd
 write(*,27)
 if(abs((xkn-xk)/xk).lt.0.001) go to 37
 a2=xbx
 go to 35
37 write(*,*)'Rezyltaty raschetov: kotsentratsiya komponenta A
 #v rastvore na vhode "xbx(kgA/kgG)" i ee gradient "gbx(kgA/kgG)",
```

```
#raschetnaya konechnaya kontsentratsiya "xkn(kgA/kgG)" i srednyaya
 # udelnaya proizvoditelnost po filtratu "Gmd(kgGf/kv.m*s)"
 write(*,49) xbx,gbx, xkn,Gmd
49 format(2x,'xbx=',f6.4,2x,'gbx=',f5.3,2x,'xkn=',f6.3,2x,
 \#'Gmd=',f7.5)
 write(*,*)' Sravnenie osnovnyh raschetnyh parametrov'
 write(*,*)'Idealnye vytesnenie,pememeshivanie,diffuzionnaya model'
 write(*,*)' Poverhnosti membran,kv.m'
 write(*,50) Fbk,Fc,Fmd
50 format(5x,'Fb=',f7.1,7x,'Fc=',f7.1,10x,'Fd=',f7.1)
 write(*,*)' Kontsentratsiya komponenta A v permeate, kgA/kgGf'
 write(*,51) xbfk,xfc,xfs
51 format(5x,'xfb=',f7.5,6x,'xfc=',f7.5,9x,'xfd=',f7.5)
 write(*,*)' Srednyaya udelnaya proizvoditelnost po permeatu,
 # kgGf/kv.m*s'
 write(*,52) Gfbs,Gfs,Gmd
52 format(5x, 'Gfb=', f7.5, 6x, 'Gfc=', f7.5, 9x, 'Gfd=', f7.5)
 pause
 end
```

ПРИЛОЖЕНИЕ 6 ПРОГРАММА ДЛЯ РАСЧЕТА ПАРАМЕТРОВ ЛИНЕЙНОГО УРАВНЕНИЯ МЕТОДОМ НАИМЕНЬШИХ ОТНОСИТЕЛЬНЫХ КВАДРАТОВ

```
Program ProgMNOK
$debug
   dimension x(20),y(20),y(20),de(20),y(1(20),de(20)
   data x/0.1,0.25,0.5,1,2,5,8,10,15,20,30,9*1/
   data y/2.1,2.4,2.8,3.5,5.1,10.6,17.3,19.2,32.3,37,55,9*1/
   write(*,*)'n'
   read(*,*) n
   do 2 i=1,n
   sy=sy+1/y(i)
   sy2=sy2+(1/y(i))**2
   syx=syx+x(i)/y(i)
   syx2 = syx2 + (x(i)/y(i))**2
   sy2x=sy2x+x(i)/y(i)**2
  2 continue
   zn=sy2*syx2-sy2x**2
   a=(sy2*syx-sy*sy2x)/zn
   b=(sy*syx2-syx*sy2x)/zn
   do 4 i=1,n
   yt(i)=a+b*x(i)
   de(i)=100*(yt(i)/y(i)-1)
   sso=sso+de(i)**2/1.e04
   ss=ss+(yt(i)-y(i))**2
  4 continue
   write(*,*)' Parametru Metoda Naumenshix Otnositelnux Kvadratov,
  #MNOK'
   write(*,1)
  1 format(2x,'-----')
   write(*,3)
  3 format(4x,'i',6x,'x',8x,'y',11x,'yt',8x,'de,%')
   write(*,1)
   do 5 i=1,n
  5 write(*,7) i,x(i),y(i),yt(i),de(i)
  7 format(3x,i2,3x,f4.1,5x,f5.2,5x,f7.2,5x,f7.2)
   write(*,1)
   write(*,*)'MNOK',' zn=',zn,' a=',a,' b=',b
   do 6 i=1.n
   s=s+x(i)
   s1=s1+y(i)
```

```
s2=s2+x(i)**2
 s3 = s3 + y(i) * x(i)
6 continue
 zn1=n*s2-s**2
 a1 = (n*s3-s1*s)/zn1
 b1=(s1*s2-s3*s)/zn1
 bb1=s1*s2-s3*s
 ss=0
 sso=0
 do 8 i=1,n
 yt1(i)=a1+b1*x(i)
 de1(i)=100*(yt1(i)/y(i)-1)
 ss=ss+(yt1(i)-y(i))**2
 sso=sso+de1(i)**2/1.e04
8 continue
 write(*,*)' Parametru Metoda Naumenshix Kvadratov,MNK'
 write(*,1)
 write(*,9)
9 format(4x,'i',6x,'x',8x,'y',9x,'yt1',8x,'de1,%')
 write(*,1)
 do 10 i=1,n
10 write(*,11)i,x(i),y(i),yt1(i),de1(i)
11 format(3x,i2,3x,f4.1,5x,f5.2,5x,f7.2,5x,f7.2)
 write(*,1)
 write(*,*)'MNK',' zn1=',zn1,' a1=',a1,' b1=',b1
 pause
 end
```

ПРИЛОЖЕНИЕ 7 ПРОГРАММА ДЛЯ РАСЧЕТА КРИТЕРИЕВ

РЕГРЕССИОННОГО АНАЛИЗА В ОТСУТСТВИИ ПАРАЛЛЕЛЬНЫХ ОПЫТОВ

```
Program Noparal
       $debug
           dimension x(30),y(30),yp(30),yc(30),yt(30),dy(30),dyp(30),sy(30),
          #del(30)
           data x/-0.69,0,0.405,0.693,0.916,1.10,1.25,1.39,1.50,1.61,1.70,
          #1.79,1.87,1.94,2.01,2.08,2.14,2.20,2.25,2.30,10*1/
           data y/0.59,0.89,1.46,2.20,2.39,2.85,2.57,3.34,2.69,2.80,3.29,
          #3.49,3.12,3.55,3.30,3.58,3.40,3.66,3.60,3.88,10*1/
           write(*,*)' nn,nk'
           read(*,*) nn,nk
           m=2
           p=2
           n=nk-nn-1
           write(*,*)'Dlji nn=1 i nk=20 cHislo raschetnix opitov n=',n
           do 2 i=nn+1,nk-1
           yp(i)=y(i-1)+(x(i)-x(i-1))*(y(i+1)-y(i-1))/(x(i+1)-x(i-1))
           yc(i)=(y(i)+yp(i))/2
          2 continue
           write(*,*)'Znachenija fynkcii:osnovnie"y",yslovnie parallelnie"yp"
          #i spednie "yc"
           write(*,1)
format(2x,'
                                                                              _')
           write(*,3)
          3 format(3x,'i',6x,'x',13x,'y',12x,' yp',12x,'yc')
           write(*,1)
           do 5 i=nn+1,nk-1
           write(*,4) i,x(i),y(i),yp(i),yc(i)
          4 format(3x,i2,3x,f5.2,8x,f6.2,8x,f6.2,8x,f6.2)
          5 continue
           write(*,1)
           do 6 i=nn+1,nk-1
           sy(i)=(y(i)-yc(i))**2+(yp(i)-yc(i))**2
           if(sy(i).lt.sym) go to 7
           im=i
           sym=sy(i)
          7 ssy=ssy+sy(i)
```

```
6 continue
 Gp=sym/(ssy*(m-1))
 so2=ssy/n
 write(*,*)'Raschetnoe chislo Koxrena Gp=',Gp
 write(*,*)'Tablichnoe chislo Koxrena Gtab=0.365'
 write(*,*)'Oshibka opita so2=',so2
 do 8 i=nn+1,nk-1
 s=s+x(i)
 s1=s1+yc(i)
 s2=s2+x(i)**2
 s3=s3+yc(i)*x(i)
8 continue
 z=n*s2-s**2
 a = (n*s3-s1*s)/z
 b = (s1*s2-s3*s)/z
 do 10 i = nn + 1, nk - 1
 yt(i)=a+b*x(i)
 del(i)=(yt(i)-yc(i))*100/yc(i)
10 continue
 write(*,*)'Koefficienti linejnogo yravnenija y=a+b*x'
 write(*,*)'a=',a,' b=',b
 pause
 write(*,*)'Sravnenie"del,%"teoreticheskih yt i experimentalnih yc'
 write(*,9)
9 format(2x,'-----')
 write(*,11)
11 format(3x,'i',8x,'x',10x,'yc',9x,'yt',7x,'del,%')
 write(*,9)
 do 12 i=nn+1,nk-1
 write(*,13) i,x(i),yc(i),yt(i),del(i)
13 format(3x,i2,5x,f5.3,5x,f6.2,5x,f6.2,5x,f6.2)
12 continue
 write(*,9)
 do 14 i=nn+1,nk-1
 s4=s4+m*(yt(i)-yc(i))**2
 sx=sx+x(i)
 syc=syc+yc(i)
14 continue
 Fp=s4/(so2*((nk-1)-(nn+1)))
 write(*,*)'Raschetnoe chislo Fishera Fp=',Fp
 write(*,*)'Tablichnoe chislo Fishera Ft=2.28'
  xc=sx/n
 ysc=syc/n
 do 16 i = nn + 1, nk - 1
```

```
syx=syx+(x(i)-xc)*(yc(i)-ysc)
sx2=sx2+(x(i)-xc)**2
sy2=sy2+(yc(i)-ysc)**2
16 continue
r=syx/sqrt(sx2*sy2)
write(*,*)'Koefficient korreljcii r=',r
sab=so2/n
tsa=abs(a)/sab
tsb=abs(b)/sab
write(*,*)'Ocenka znachimosti koefficientov a,b;dlji n=18
# tablichnoe chislo Studenta St=2.1'
write(*,*)'Raschetnoe chislo znachimosti koefficienta a, tsa=',tsa
write(*,*)'Raschetnoe chiclo znachimosti koefficienta b, tsb=',tsb
pause
end
```